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1. INTRODUCTION

The massive development of digital technology has revolutionized various aspects of life,
including education. The transformation in education has given rise to online learning platforms that
enable flexible teaching and learning processes regardless of time and place. Ruang Guru is one of the
most popular online learning applications in Indonesia, providing interactive videos, practice questions,
private tutoring, and online try-outs for students from elementary to high school levels.

User reviews and feedback posted on platforms like the Google Play Store or social media are
essential resources for evaluating the performance of the application. However, the sheer volume of
reviews makes manual analysis inefficient and time-consuming.

Natural Language Processing (NLP) offers a solution by enabling computers to understand,
process, and analyze large volumes of text automatically. Sentiment analysis is one of the widely used
NLP applications, which classifies user opinions as positive, negative, or neutral. Naive Bayes and
Support Vector Machine (SVM) are popular classification algorithms commonly applied in text
classification tasks due to their effectiveness and efficiency.

According to Indah and Mardiyanto (2020), the implementation of tokenizing and stemming has
been shown to improve model accuracy in sentiment analysis. This is supported by Putri et al. (2021),
who emphasized that the quality of classification outcomes heavily depends on the preprocessing stage.
Therefore, careful execution of tokenizing and stemming is crucial for obtaining accurate and
meaningful data representations (Zhafira, Rahayudi, & Indriati, 2021). Although many studies have
explored these NLP techniques in the context of e-commerce and social media, their application in the
education sector—particularly on user comments from online learning platforms like Ruang Guru—
remains limited. In fact, sentiment analysis of LMS user feedback holds significant potential for
uncovering users’ perceptions and experiences of digital learning systems (Nurkumalawati & Rofli,
2023).

Based on these considerations, this study aims to analyze the sentiment of Ruang Guru user
comments by implementing Support Vector Machine (SVM) and Naive Bayes algorithms, and to
evaluate the performance of both models (Susandri et al., 2021). The study begins with a data
preprocessing stage involving tokenizing and stemming to construct textual features, which are
subsequently used in classifying sentiment into three main categories: positive, negative, and neutral
(Yunitasari & Putera, 2021).

2. METHODS

This study employs a quantitative descriptive approach that integrates Natural Language
Processing (NLP) techniques with machine learning-based sentiment classification (Santoso & Wibowo,
2022). The primary objective is to develop a system capable of automatically classifying Ruang Guru
app reviews into positive and negative sentiment categories based on the textual content provided by
users (Hendriyanto, Ridha, & Enri, 2022) To achieve this, a structured methodological framework was
implemented, comprising several key stages: data collection, preprocessing, feature extraction, model
training, and performance evaluation. User comments were scraped from the Google Play Store using
the google_play_scraper library, resulting in a dataset of 6,000 Indonesian-language comments.

During the preprocessing phase, standard NLP techniques were applied —these included cleaning
(removal of punctuation, numbers, and URLs), lowercasing, tokenizing, stopword removal, and
stemming using the Sastrawi library. The clean and standardized text was then transformed into
numerical representations using two widely adopted feature extraction methods: Term Frequency-
Inverse Document Frequency (TF-IDF) and Bag of Words (BoW). The classification task was performed
using two machine learning algorithms: Support Vector Machine (SVM) and Naive Bayes. Sentiment
labels (positive or negative) were assigned using a lexicon-based approach, supported by manual
validation to ensure labeling accuracy. The dataset was split into training and testing subsets using an
80:20 ratio, and performance was evaluated using 10-fold cross-validation. The evaluation metrics used
in this study included accuracy, precision, recall, and Fl-score, allowing for a comprehensive
assessment of model effectiveness. Figure 1 illustrates the overall workflow applied in this study, from
raw data acquisition to final sentiment classification.
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Figure 1. Structured Strages

2.1 Dataset

The dataset used in this study was obtained through an Application Programming Interface (API)
call to the Ruang Guru platform, a Online Learning utilized by various educational institutions across
Indonesia. The collected data consisted of original user comments—primarily from students and
lecturers—providing feedback related to their experience using the application for online learning
activities.

Each entry in the dataset includes comment text along with supporting metadata such as date, user
role, and comment ID. Since there were no numeric scores or ratings available (as found in e- commerce
platforms), sentiment labeling was conducted using a semi-automated approach:

a) Lexicon-Based Labeling, by utilizing an Indonesian sentiment lexicon containing positive
and negative words.
b) Manual validation on a portion of the data to minimize misclassification.

The comments were classified into two main categories: positive sentiment and negative
sentiment. Comments with neutral or ambiguous tones were excluded from the dataset to focus the
analysis on clearly polarized sentiments. The outcome of this process was a clean dataset, ready for
NLP processing and classification tasks.

2.2 Text Preprocessing

Text preprocessing is a critical first step in sentiment analysis using Natural Language Processing
(NLP), especially when working with unstructured text data, such as user comments on the Ruang
Guru platform. This stage aims to transform raw textual data into a structured, clean format suitable
for feature extraction and model training. In this study, preprocessing was carried out in several
systematic steps.

First, data cleaning was performed to remove irrelevant elements such as punctuation, numbers,
URLs, emoticons, hashtags, mentions, and other special characters that hold no linguistic meaning. This
step ensures that only meaningful words are retained.

Next, case folding was applied by converting all text into lowercase to standardize text
representation and avoid duplication caused by capitalization differences (e.g., “Ruang Guru” vs.
“ruang guru”). Afterward, the text was segmented into individual tokens using the tokenizing process.
For example, the sentence “Ruang Guru sangat membantu pembelajaran daring” would be tokenized
into [“ruang guru”, “sangat”, “
for semantic analysis, allowing each word to be analyzed independently.

Stopword removal followed, where common, non-informative words such as “yang”, “dan”, “di”,

”oou

membantu”, “pembelajaran”, “daring”]. This process forms the basis

and “ke” were removed using a predefined stopword list from NLTK and the Sastrawi library. This
was done to focus the model on meaningful words.

The next step was stemming, which converts words to their root forms using the Sastrawi library.
Words like “mengakses”, “diakses”, and “pengaksesan” would all be reduced to “akses”. Stemming
helps minimize unnecessary word variations and improves consistency in text modeling.

The final stage was label encoding, where comments were labeled based on sentiment polarity.

Comments with positive sentiment were assigned the label 1, while those with negative sentiment
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were labeled 0. Since the data consisted of free text without numeric ratings, sentiment labeling was
based on a lexicon approach combined with manual validation to enhance accuracy.

As a result of this preprocessing pipeline, the corpus was cleaned, standardized, and numerically
encoded —ready for the feature extraction stage using methods such as TF-IDF and Bag of Words. The
success of this process greatly influences the performance of the classification algorithms used in this
study, namely Support Vector Machine (SVM) and Naive Bayes.

2.3  Feature Extraction

After preprocessing, user comment texts needed to be converted into numerical representations to
be processed by machine learning algorithms. This process, known as feature extraction, employed two
popular text representation techniques: Term Frequency-Inverse Document Frequency (TF-IDF) and
Bag of Words (BoW).

TF-IDF is a word-weighting technique that evaluates the importance of a word in a document
relative to the entire corpus. The Term Frequency (TF) component measures how often a word appears
in a comment, while the Inverse Document Frequency (IDF) penalizes words that appear frequently
across many documents, as such words tend to carry less unique information. Therefore, TF-IDF is
effective in emphasizing truly relevant words in sentiment analysis and reducing the influence of
common, non-discriminative words.

In contrast, Bag of Words (BoW) is a simpler method that calculates the frequency of word
occurrences without considering their order or context. BoW generates high-dimensional vectors
representing the presence of words in a document. Although BoW does not capture word semantics or
relationships, it is widely used as a baseline in many text classification tasks due to its ease of
implementation and competitive results, especially for small to medium-sized datasets.

In this study, both TF-IDF and BoW were applied in parallel and used as input to two different
classifiers—SVM and Naive Bayes—to compare their performance. This comparison aimed to identify
which combination of feature extraction technique and classification model was most effective in
classifying the sentiment of Edlink user comments.

24  Classification Algorith

This study implemented two machine learning algorithms for sentiment classification of Ruang
Guru user comments: Support Vector Machine (SVM) and Naive Bayes. SVM works by constructing an
optimal hyperplane that separates two classes of data—positive and negative sentiment—with
maximum margin. Its capability to handle high-dimensional data, such as text, makes SVM a popular
choice for classification tasks, including sentiment analysis.

Naive Bayes, on the other hand, is an ensemble method based on a collection of decision trees built
randomly. By aggregating predictions from multiple trees, Naive Bayes can provide stable and
overfitting-resistant predictions. It is also effective in dealing with nonlinear and noisy data. In this
study, both algorithms were trained using preprocessed and feature-extracted comment data through
two approaches: TF-IDF and BoW. A train-test split method with a ratio of 80:20 was applied —80% for
training and 20% for testing. This approach allows for an objective evaluation of each model’s
performance under different feature combinations.

2,5  Evaluation and Analysis

The classification models in this study were evaluated using four commonly used performance
metrics: accuracy, precision, recall, and F1-score.
a) Accuracy measures the proportion of correct predictions among all test data.

b) Precision indicates the proportion of true positives among all positive predictions made
by the model.
c) Recall assesses how many actual positive comments were correctly identified by the

model.
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d) Fl-score is the harmonic mean of precision and recall and is particularly important when
dealing with imbalanced data.

To assess the performance of each feature-model combination, four test scenarios were conducted:
(1) SVM with TE-IDF,

(2) SVM with BoW,
(3) Naive Bayes with TF-IDF, and
(4) Naive Bayes with BoW.

Each combination was tested to evaluate the models’ accuracy and precision in classifying user
comments into positive or negative sentiment categories. The evaluation results were presented in
tables and graphs to facilitate comparison across models.

In addition to quantitative analysis, manual review of selected predictions was conducted to assess
the models’ ability to understand informal Indonesian language commonly used by Edlink users and
to evaluate the consistency and relevance of their predictions. This comprehensive evaluation offers a
well-rounded perspective on each model’s effectiveness in performing sentiment analysis on user-
generated text data.

his study implemented two machine learning algorithms for sentiment classification of Edlink user
comments: Support Vector Machine (SVM) and Naive Bayes.

SVM works by constructing an optimal hyperplane that separates two classes of data—positive
and negative sentiment —with maximum margin. Its capability to handle high-dimensional data, such
as text, makes SVM a popular choice for classification tasks, including sentiment analysis.

Naive Bayes, on the other hand, is an ensemble method based on a collection of decision trees built
randomly. By aggregating predictions from multiple trees, Naive Bayes can provide stable and
overfitting-resistant predictions. It is also effective in dealing with nonlinear and noisy data.

In this study, both algorithms were trained using preprocessed and feature-extracted comment
data through two approaches: TF-IDF and BoW. A train-test split method with a ratio of 80:20 was
applied —80% for training and 20% for testing. This approach allows for an objective evaluation of each
model’s performance under different feature combinations.

3. FINDINGS AND DISCUSSION
This study aims to detect sentiment in Ruang Guru app user reviews using a Natural Language
Processing (NLP) approach with Support Vector Machine (SVM) and Naive Bayes algorithms. In this
study, data is classified into two main labels: positive and negative. Positive labels represent reviews
indicating user satisfaction, while negative labels represent complaints or dissatisfaction.

3.1 Dataset (Aplication Review Collection for Ruang Guru)

This study aims to detect sentiment in Ruang Guru app user reviews using a Natural Language
Processing (NLP) approach with Support Vector Machine (SVM) and Naive Bayes algorithms. In this
study, data is classified into two main labels: positive and negative. Positive labels represent reviews
indicating user satisfaction, while negative labels represent complaints or dissatisfaction.

[59]: from google play_ scraper import app + [ TN EF R

#scrape jumlah ulasan yang diinginkan
from google play_scraper import Sort, reviews

result, continuation_token = reviews(
‘com.ruangguru.livestudents',
lang="id', #disini kita mau men scrape data ulasan aplikasi shopee yang berada di google play store
country="id', #kita setting bahasa nya menjadi bahasa indonesia
sort=Sort.NEWEST, # # kemudian kita gunakan most rel
count=6000, # disini jumlah ulasan yang mau Rita

evan untuk mendapatkan ulasan yang paling relevant

mbil ada seribu

filter_score_with=None # # kemudian di filter score kita gunakan None untuk mengambil semua score atau ratting bintang 1 sampai 5

Figure 2. Ruang Guru Aplication Data Retrieval
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3.2  Early Text Preprocessing
The first step in sentiment analysis involved data cleaning and text normalization, which aimed to
remove unnecessary elements from the text such as URLs, numbers, punctuation marks, foreign
characters, and excessive whitespace. Additionally, all letters were converted to lowercase to avoid
differences in meaning between words like “Ruang Guru” and “ruang guru”.
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Figure 3. Ruang Guru Application Review Exktraction Results Data
(Post-Scraping & Preprocessing)

3.3  Advanced Text Filtering
Following the initial cleaning and normalization, a more advanced filtering process was carried
out to eliminate remaining irrelevant data. This step included removing empty rows or rows containing
only spaces in the content_token column and eliminating very short words (fewer than three characters)
that typically have little semantic value in sentiment analysis. However, exceptions were made for short
but relevant terms such as “ktp”, “kk”, “apk”, “app”, and “bug,” as these frequently appear in app
reviews and hold specific meanings.
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Figure 4. Advanced Screening Data
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3.4  Tokenizing

After the comments were cleaned and filtered, the next step was tokenizing, which is the process
of splitting review texts into individual word units (tokens) using specific patterns. In this study,
RegexpTokenizer from the NLTK library was used with the \ w+ pattern, meaning only word characters

(letters and numbers) were extracted while ignoring symbols and punctuation.
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Figure 5. Word-Level Representation-Tokenizing
3.5 Stemming

Stemming is the process of reducing words to their base forms so that machine learning models
can more easily recognize word patterns. In this study, stemming was performed using the Sastrawi
library, which is specifically designed for the Indonesian language. For example, the words
“mengakses,” “diakses,” and “pengaksesan” were all reduced to their root form “akses.”

content content_tokenized content_stop stemmed label stemmed_str

0 Belajar di Ruangguru membantu  [Belajar, di, Ruangguru, membantu, [Belajar, Ruangguru, membantu, [ajar, ruangguru, bantu, necdtive ajar ruangguru bantu siswa

siswa Indonesia siswa, Indo... siswa, Indonesia] siswa, indonesia] 9 indonesia

Ruangguru aplikasi edukasi [Ruangguru, aplikasi, edukasi, [Ruangguruy, aplikasi, edukasi,  [ruangguruy, aplikasi, edukasi, - ruangguru aplikasi edukasi

1 ) N . ; . . 4 - negative . N

online terbaik online, terbaik] online, terbaik] online, baik] online baik

2 Sangat bermanfaat untuk semua  [Sangat, bermanfaat, untuk, semua, [Sangat, bermanfaat, kalangan] [sangat, manfaat, kalang] negative sangat manfaat kalang
kalangan kalangan]

3 Satisthtiighebetabatiatmdan fClate itk bebelapa ater [Gratis, materi, kelas] [gratis, materi, kelas] negative gratis materi kelas
kelas dan, kelas]

4 Akses mudah, fitur lengkap [Akses, mudah, fitur, lengkap] [Akses, mudah,, fitur, lengkap] [akses, mudah, fitur, lengkap] negative  akses mudah fitur lengkap

Figure 6. Stemming Results

3.6 Text Data Visualization (Preprocessing Visualization)
This stage aimed to understand the dominant characteristics of words found in Edlink user
reviews. Using WordCloud techniques, a visual representation of the most frequently occurring words
in positive and negative sentiment labels was displayed.

WordCloud - Negative Sentiment

apllka51bantu"‘“dahcu

akses
Sangagngkapggu U~
materi

mefaar
lang<

edukasi .2,8%150
1ndonesliam baik

Figure 7. Visualization Results
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3.7  Word Frequency Analysis

This phase aimed to identify the most frequently occurring words in positive and negative

sentiment comments after stemming. The Counter function from the collections library was used to

count the frequency of each token (word).

-

Top 10 Kata Paling Banyak Muncul - Positif:

Top 1@ Kata Paling Banyak Muncul - Negatif:
ruangguru: 2
ajar: 1
bantu: 1
siswa: 1
indonesia: 1
aplikasi: 1
edukasi: 1
online: 1
baik: 1
sangat: 1

Figure 8. Top 10 Words Most Frequently Used by Users

3.8 Feature Extraction Using TF-IDF
After cleaning and stemming the user review texts, the next step was to convert the text into a

numerical representation that could be processed by machine learning models. This study employed
Term Frequency-Inverse Document Frequency (TF-IDF) as the feature extraction method. TF-IDF

assigns a weight to each word based on how frequently it appears in a specific document compared to

the entire corpus.
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Figure 9. Feature Extraction Output Using TF-IDF

3.9 SVM Model Evaluation Using Cross-Validation and Confusion Matrix

Once feature representations were created using TF-IDF, the Support Vector Machine (SVM)
algorithm was applied to classify user sentiment in Ruang Guru reviews. Model performance was
evaluated using 10-fold cross-validation to obtain a com&rehensive view of the model’s accuracy.
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Figure 10. SVM Model Evaluation
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3.10 Naive Bayes Model Evaluation Using Cross-Validation and Confusion Matrix
To compare the performance of classification models, this study also implemented the
Multinomial Naive Bayes algorithm for sentiment classification of Ruang Guru user comments.
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Evaluation was conducted using 10-fold cross-validation to determine the overall model accuracy. In
addition, a confusion matrix was used to assess the classification precision between positive and
negative sentiment labels.

Confusion Matrix - Naive Bayes
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Figure 11. Naive Bayes Model Evaluation

4. CONCLUSION

This study demonstrates that the Natural Language Processing (NLP) approach combined with
the Support Vector Machine (SVM) algorithm and TF-IDF features is highly effective for analyzing the
sentiment of Ruang Guru app user comments. The evaluation results show that the SVM model with
TF-IDF produces higher accuracy than Naive Bayes, especially in accurately distinguishing positive
and negative comments. The use of comprehensive text preprocessing techniques, such as cleaning,
tokenizing, stopword removal, and stemming, plays a crucial role in improving data quality and model
performance. These findings strengthen evidence from previous studies that SVM is a reliable
algorithm for classifying Indonesian-language text. Acknowledgments: The authors thank Universitas
Lancang Kuning for support and the lecturers of the NLP course for their guidance throughout this
project.
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