Analisis Sentimen pada Ulasan Kegiatan Seminar Nasional Sistem Informasi dan Teknologi Komputer 2023 menggunakan Natural Language Processing (NLP)
Abstract
This research aims to analyze the sentiment of participant reviews of the National Seminar on Information Systems and Computer Technology 2023 using Natural Language Processing (NLP). With the increasing use of social media and online platforms, sentiment analysis is becoming an important tool to manage and summarize information from diverse participant opinions. This research uses an NLP model adapted to the Indonesian language to provide more contextual and in-depth insights. The research process involved review data collection, data pre-processing, tokenization, stopword removal, stemming, and sentiment analysis using the Naive Bayes algorithm. The analysis results showed that 90% of the reviews were positive, with the most appreciated aspects including the quality of the seminar materials and the availability of facilities. Meanwhile, 10% of reviews were negative, mainly related to time management and interaction with speakers. These findings provide concrete guidance for organizers to focus on improving the less satisfactory aspects. Evaluation of the effectiveness of the NLP model showed that the technique was able to identify sentiment with higher accuracy than conventional methods, reinforcing the potential of NLP as an effective tool in local language-based sentiment analysis. This research contributes to the development of sentiment analysis methodology in the context of Indonesian language, as well as providing valuable references for further research in the field of sentiment analysis.
Downloads
References
Agastya, W., & Aripin. (2020). Pemetaan Emosi Dominan pada Kalimat Majemuk Bahasa Indonesia Menggunakan Multinomial Naïve Bayes. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 9(2), 171–179. https://doi.org/10.22146/jnteti.v9i2.157
Asiyah, S. N., & Fithriasari, K. (2016). Klasifikasi Berita Online Menggunakan Metode Support Vector Machine Dan K-Nearest Neighbor Online News Classification Using Support Vector Machine and K-Nearest. Jurnal Sains Dan Seni ITS, 5(2).
Azim, M. A., & Bhuiyan, M. H. (2018). Text to emotion extraction using supervised machine learning techniques. Telkomnika (Telecommunication Computing Electronics and Control), 16(3), 1394–1401. https://doi.org/10.12928/TELKOMNIKA.v16i3.8387
Haque, Atiqul; Mineno, H. (2018). Contextual Outlier Detection in Sensor Data Using Minimum Spanning Tree Based Clustering. 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), 1–4.
Hidayatullah, A. F., & Ma’arif, M. R. (2016). Penerapan Text Mining dalam Klasifikasi Judul Skripsi. Seminar Nasional Aplikasi Teknologi Informasi (SNATi) Agustus, 1907–5022.
Indrayuni, E. (2019). Klasifikasi Text Mining Review Produk Kosmetik Untuk Teks Bahasa Indonesia Menggunakan Algoritma Naive Bayes. Jurnal Khatulistiwa Informatika, 7(1), 29–36. https://doi.org/10.31294/jki.v7i1.1
Ipmawati, J., Kusrini, & Taufiq Luthfi, E. (2017). Komparasi Teknik Klasifikasi Teks Mining Pada Analisis Sentimen. Indonesian Journal on Networking and Security, 6(1), 28–36.
Luqyana, W. A., Cholissodin, I., & Perdana, R. S. (2018). Analisis Sentimen Cyberbullying Pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 2(11), 4704–4713.
Martin, L., & Pu, P. (2014). Prediction of helpful reviews using emotions extraction. Proceedings of the National Conference on Artificial Intelligence, 2, 1551–1557.
Noori, A., Kamaruddin, S. S. B., & Ahmad, F. B. K. (2019). Towards an outlier detection model in text data stream. International Journal of Advanced Trends in Computer Science and Engineering, 8(6), 2970–2973. https://doi.org/10.30534/ijatcse/2019/47862019
Nugroho, K. S., Istiadi, I., & Marisa, F. (2020). Naive Bayes classifier optimization for text classification on e-government using particle swarm optimization. Jurnal Teknologi Dan Sistem Komputer, 8(1), 21–26. https://doi.org/10.14710/jtsiskom.8.1.2020.21-26
Perwira, A., Dwitama, J., & Kunci, K. (2021). Deteksi Ujaran Kebencian Pada Twitter Bahasa Indonesia Menggunakan Machine Learning : Reviu Literatur. 1, 31–39.
Prayoginingsih, S., & Kusumawardani, R. P. (2018). Klasifikasi Data Twitter Pelanggan Berdasarkan Kategori myTelkomsel Menggunakan Metode Support Vector Machine (SVM). Sisfo, 07(02). https://doi.org/10.24089/j.sisfo.2018.01.002
Syahputra, I. E., & Efendi, S. (2020). Indonesian Text Dataset for Determining Sentiment Classification Using Mechine Learning Approach. JITE (Journal of Informatics and Telecommunication Engineering), 3(2), 192–201.