Implementasi Algoritma K-Means untuk Pengelompokan Anak Kurang Gizi di Puskesmas
DOI:
https://doi.org/10.31849/jurkim.v5i2.27968Keywords:
Malnutrisi, K-Mean, Gizi, Malnutrition, K-Means Clustering, Child Nutrition Status, Community Health Center, Davies-Bouldin IndexAbstract
Malnutrition in children remains a major challenge that affects their quality of life and development. Early identification and grouping of children at risk of malnutrition are crucial for effective intervention. This study aims to apply the K-Means algorithm to cluster the nutritional status of toddlers at Umban Sari Community Health Center, using variables such as height, weight, age, and gender. A total of 1,764 toddler data records were analyzed and grouped into two clusters: a cluster of well-nourished children and a cluster of malnourished children. The results show that 34.6% of children belong to the well-nourished cluster, while 65.4% are classified in the malnourished cluster. Validation using the Davies-Bouldin Index (DBI) yielded a value of 0.525, indicating a reasonably good separation between clusters. These findings provide a strong foundation for the Community Health Center to conduct more targeted interventions and improve the effectiveness of monitoring child nutrition status in the Umban Sari area
References
Bayu Lokananta, R., Yuana, H., & Dwi Puspitasari, W. (2024). Implementasi Algoritma K-Means Terhadap Pengelompokkan Status Gizi Balita (Studi Kasus : Posyandu Melati Vii). JATI (Jurnal Mahasiswa Teknik Informatika), 7(5), 3585–3592. https://doi.org/10.36040/jati.v7i5.7377
Eko, Y., Rema, Y. O. L., Ullu, H. H., & Baso, B. (2024). Implementasi Metode K-Means Clustering untuk Menentukan Kondisi Gizi Balita (Studi Kasus : Puskesmas Mamsena). Jurnal Tekno Kompak, 19(1), 163. https://doi.org/10.33365/jtk.v19i1.4717
Fatonah, N. S., & Pancarani, T. K. (2022). Analisa Perbandingan Algoritma Clustering Untuk Pemetaan Status Gizi Balita Di Puskesmas Pasir Jaya. Konvergensi, 18(1), 1–9. https://doi.org/10.30996/konv.v18i1.5497
Ipmawati, J., & Unggara, I. (2024). Analisis Status Gizi Anak Menggunakan Metode Klastering pada Dataset Anthropometri. Bit-Tech, 7(2), 494–504. https://doi.org/10.32877/bt.v7i2.1869
Mahardika, B. W., & Abadi, A. M. (2024). Implementation of K-Means and Fuzzy C-Means Clustering for Mapping Toddler Stunting Cases in Gunungkidul District. Barekeng, 18(4), 2231–2246. https://doi.org/10.30598/barekengvol18iss4pp2231-2246
Octaviyani, N. R., Mayasari, R., & Susilawati. (2022). Implementasi Algoritma K-Means Clustering Status Gizi Balita. Jurnal Ilmiah Wahana Pendidikan, 8(13), 370–381. https://doi.org/10.5281/zenodo.6962588
Sintawati, I. D., Widiarina, W., & Mariskhana, K. (2024). Analysis of Malnutrition Status in Toddlers Using the K-MEANS Algorithm Case Study in DKI Jakarta Province. Sinkron, 8(4), 2318–2324. https://doi.org/10.33395/sinkron.v8i4.14087
Sitohang, D. W., & Rikki, A. (2019). Implementasi Algoritma K- Means Clustering untuk Mengelompokkan Data Gizi Balita pada Kecamatan Garoga Tapanuli Utara. KAKIFIKOM (Kumpulan Artikel Karya Ilmiah Fakultas Ilmu Komputer), 02, 80–92. https://doi.org/10.54367/kakifikom.v1i2.642
Tinendung, I. S., & Zufria, I. (2023). Pengelompokan Status Stunting Pada Anak Menggunakan Metode K-Means Clustering. Jurnal Media Informatika Budidarma, 7(4), 2014. https://doi.org/10.30865/mib.v7i4.6908
Widyawati, F., Dawod, A. Y., & Santoso, H. A. (2025). K-Means Clustering Optimization of Toddler Malnutrition Status Using Elbow Method. Journal of Informatics and Web Engineering, 4(2), 360–374. https://doi.org/10.33093/jiwe.2025.4.2.23





