Implementasi Algoritma K-Means untuk Pengelompokan Anak Kurang Gizi di Puskesmas

Authors

  • Marince Cristina Panjaitan Universitas Lancang Kuning
  • Lisnawita Lisnawita* Universitas Lancang Kuning

DOI:

https://doi.org/10.31849/jurkim.v5i2.27968

Keywords:

Malnutrisi, K-Mean, Gizi, Malnutrition, K-Means Clustering, Child Nutrition Status, Community Health Center, Davies-Bouldin Index

Abstract

Malnutrition in children remains a major challenge that affects their quality of life and development. Early identification and grouping of children at risk of malnutrition are crucial for effective intervention. This study aims to apply the K-Means algorithm to cluster the nutritional status of toddlers at Umban Sari Community Health Center, using variables such as height, weight, age, and gender. A total of 1,764 toddler data records were analyzed and grouped into two clusters: a cluster of well-nourished children and a cluster of malnourished children. The results show that 34.6% of children belong to the well-nourished cluster, while 65.4% are classified in the malnourished cluster. Validation using the Davies-Bouldin Index (DBI) yielded a value of 0.525, indicating a reasonably good separation between clusters. These findings provide a strong foundation for the Community Health Center to conduct more targeted interventions and improve the effectiveness of monitoring child nutrition status in the Umban Sari area

References

Bayu Lokananta, R., Yuana, H., & Dwi Puspitasari, W. (2024). Implementasi Algoritma K-Means Terhadap Pengelompokkan Status Gizi Balita (Studi Kasus : Posyandu Melati Vii). JATI (Jurnal Mahasiswa Teknik Informatika), 7(5), 3585–3592. https://doi.org/10.36040/jati.v7i5.7377

Eko, Y., Rema, Y. O. L., Ullu, H. H., & Baso, B. (2024). Implementasi Metode K-Means Clustering untuk Menentukan Kondisi Gizi Balita (Studi Kasus : Puskesmas Mamsena). Jurnal Tekno Kompak, 19(1), 163. https://doi.org/10.33365/jtk.v19i1.4717

Fatonah, N. S., & Pancarani, T. K. (2022). Analisa Perbandingan Algoritma Clustering Untuk Pemetaan Status Gizi Balita Di Puskesmas Pasir Jaya. Konvergensi, 18(1), 1–9. https://doi.org/10.30996/konv.v18i1.5497

Ipmawati, J., & Unggara, I. (2024). Analisis Status Gizi Anak Menggunakan Metode Klastering pada Dataset Anthropometri. Bit-Tech, 7(2), 494–504. https://doi.org/10.32877/bt.v7i2.1869

Mahardika, B. W., & Abadi, A. M. (2024). Implementation of K-Means and Fuzzy C-Means Clustering for Mapping Toddler Stunting Cases in Gunungkidul District. Barekeng, 18(4), 2231–2246. https://doi.org/10.30598/barekengvol18iss4pp2231-2246

Octaviyani, N. R., Mayasari, R., & Susilawati. (2022). Implementasi Algoritma K-Means Clustering Status Gizi Balita. Jurnal Ilmiah Wahana Pendidikan, 8(13), 370–381. https://doi.org/10.5281/zenodo.6962588

Sintawati, I. D., Widiarina, W., & Mariskhana, K. (2024). Analysis of Malnutrition Status in Toddlers Using the K-MEANS Algorithm Case Study in DKI Jakarta Province. Sinkron, 8(4), 2318–2324. https://doi.org/10.33395/sinkron.v8i4.14087

Sitohang, D. W., & Rikki, A. (2019). Implementasi Algoritma K- Means Clustering untuk Mengelompokkan Data Gizi Balita pada Kecamatan Garoga Tapanuli Utara. KAKIFIKOM (Kumpulan Artikel Karya Ilmiah Fakultas Ilmu Komputer), 02, 80–92. https://doi.org/10.54367/kakifikom.v1i2.642

Tinendung, I. S., & Zufria, I. (2023). Pengelompokan Status Stunting Pada Anak Menggunakan Metode K-Means Clustering. Jurnal Media Informatika Budidarma, 7(4), 2014. https://doi.org/10.30865/mib.v7i4.6908

Widyawati, F., Dawod, A. Y., & Santoso, H. A. (2025). K-Means Clustering Optimization of Toddler Malnutrition Status Using Elbow Method. Journal of Informatics and Web Engineering, 4(2), 360–374. https://doi.org/10.33093/jiwe.2025.4.2.23

Downloads

Published

2025-05-30