Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Algoritma Naïve Bayes Classifier Dan Support Vector Machine Di Twitter
DOI:
https://doi.org/10.31849/s7ayy294Keywords:
Analisis Sentimen, Kampus Merdeka, Naïve Bayes, Support Vector Machine, TwitterAbstract
Kampus Merdeka is one of the policies initiated by the Minister of Education and Culture in 2020. Since it was first launched, this program has received many pros and cons from the public, one of which is from the social media Twitter. The aim of this research is to determine positive, negative and neutral sentiment in the dataset regarding the Merdeka Campus and to determine the optimal accuracy of the comparison between the SVM and NBC methods for the Merdeka Campus on Twitter. The data used in this research amounted to 1000 data based on the most recent comments when the data was taken, via the APIFY website from Twitter post comments through a crawling process. Support Vector Machine is the best algorithm for analyzing sentiment towards the Independent Campus program on Twitter with the highest level of accuracy at a data comparison of 90:10, namely 87%, for precision, recall and f1-score values for negative sentiment, namely 93%, 95% , and 94%, neutral sentiment was 76%, 84%, and 80%, and positive sentiment was 90%, 82%, and 86%. Meanwhile, the Naïve Bayes algorithm obtained the highest level of accuracy in the 90:10 data comparison, namely 81% and obtained precision, recall and f1-score values for negative sentiment, namely 73%, 100% and 85%, neutral sentiment was 78%, 66%, and 71%, and positive sentiment 93%, 76%, and 84%. Based on the highest accuracy value, namely SVM with a data sharing proportion of 90:10, the sentiment results can be visualized, namely that the public's response to the independent campus program tends to be positive with a percentage of 36.5%, while for negative sentiment the percentage is 32.8%. , and neutral sentiment gets a percentage of 30.7%.
References
Amalia, N., Suprapti, T., & Dwilestari, G. (2023). Analisis Sentimen Pengguna Twitter Terhadap Pelaksanaan Kurikulum Mbkm. Jurnal Teknik Elektro Dan Informatika ANALISIS, 18, 57–64. https://doi.org/10.30587/e-link.v18i1.5335
Cahyana, Y., & Siregar, A. M. (2023). Analisis Sentimen Pindah Ibu Kota Negara ( IKN ) Baru pada Twitter Menggunakan Algoritma Naive Bayes dan Support Vector Machine ( SVM ). Jurnal Faktor Exacta, 16(3), 170–181. https://doi.org/10.30998/faktorexacta.v16i3.16703
Dwilestari, G., & Afifah, T. A. (2025). Perbandingan Kinerja Algoritma Naive Bayes Dan Decision Tree Dalam Klasifikasi Kanker Paru-Paru. Jurnal Mahasiswa Teknik Informatika, 9(1), 801–807. https://doi.org/10.36040/jati.v9i1.12463
Fitri, E., Yuliani, Y., Rosyida, S., & Gata, W. (2020). Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes , Random Forest Dan Support Vector Machine. Transformtika, 18(1), 71–80 https://doi.org/10.26623/transformatika.v18i1.2317.
Gunawan, A., Tihami, M. A., Masdariah, E., Kurniawati, E., & Suwenti, R. (2025). Analisis Strategi Manajemen Pendidikan Islam dalam Menghadapi Era Society 5 . 0. Jurnal Kependidikan, 14(2), 2309–2318. https://doi.org/10.58230/27454312.2146
Hermawan, A., Jowensen, I., Junaedi, & Edy. (2023). Implementasi Text-Mining untuk Analisis Sentimen pada Twitter dengan Algoritma Support Vector Machine. Jurnal Sains Dan Teknologi, 12(1), 129–137. https://doi.org/10.23887/jstundiksha.v12i1.52358
Kementerian Pendidikan dan Kebudayaan. (2020). Buku Panduan (1st ed.). Direktorat Jenderal Pendidikan Tinggi Kemdikbud RI.
Kholila, N. (2021). Merdeka Belajar – Kampus Merdeka Pada Twitter Menggunakan Support Vector Machine (Svm). Jurnal Ilmiah Teknik Informatika, 15(2), 252–261. https://doi.org/10.35457/antivirus.v15i2.1866
Khotimah, K., & Susanti, A. I. (2025). Implementasi dan Tantangan Kebijakan Kurikulum Merdeka Belajar Kampus Merdeka di Perguruan Tinggi Indonesia. Jurnal Ilmu Pendidikan Volume, 8, 126–140. https://doi.org/10.37329/cetta.v8i2.4085
Limbong, A. M., & Asbari, M. (2024). Transformasi Standar Nasional dan Akreditasi Pendidikan Tinggi. Journal Of Information Systems And Management, 03(01), 101–105. https://doi.org/10.4444/jisma.v3i1.905
Misnawati, & Zuraini. (2023). Dampak Implementasi Program Pembelajaran Merdeka Belajar Kampus Merdeka ( MBKM ) di Universitas Almuslim. Religion Education Social Laa Roiba Journal, 5(5), 2702–2717. https://doi.org/10.47467/reslaj.v5i5.3268
Pandunata, P., Ali, S. R., & Nurdiansyah, Y. (2023). Analisis Sentimen Program Merdeka Belajar Naïve Bayes Classifier. Jurnal Sistem Informasi Dan Bisnis Cerdas, 16(1), 31–40. https://doi.org/10.33005/sibc.v16i1.191
Rahayu, I. P., Fauzi, A., & Indra, J. (2022). Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Naive Bayes Dan Support Vector Machine. Jurnal Sistem Komputer Dan Informatika (JSON), 4, 296–301. https://doi.org/10.30865/json.v4i2.5381.
Rohman, A., & Wibowo, A. (2020). Prediksi Kepuasan Mahasiswa Terhadap Layanan Akademik Dalam Program MBKM Menggunakan. Jurnal Ilmiah Teknik Informatika Dan Sistem Informasi, 12(3), 1262–1272. https://doi.org/10.35889/jutisi.v12i3.1670
Sari, M., Syahrullah, Lapatta, N. T., & Ardiansyah, R. (2024). Twitter ( X ) Sentiment Analysis Of Kampus Merdeka Program Using Support Vector Machine Algorithm And Selection Feature Chi- Analisis Sentimen Program Kampus Merdeka Di Twitter ( X ) Menggunakan Algoritma Support Vector Machine Dengan Seleksi Fitur Chi-Sq. Jurnal Teknik Informatika (JUTIF), 5(5), 1249–1256. https://doi.org/10.52436/1.jutif.2024.5.5.2037
Triana, P., Selfilia, & Praptiningsih. (2024). Implementasi Dan Dampak MBKM Untuk Meningkatkan Kompetensi Hard Skills Dan Soft Skills Mahasiswa Fakultas Ekonomi Dan Bisnis UPN Veteran Jakarta. Jurnal Ilmiah Wahana Pendidikan, 10(4), 626–644. https://doi.org/10.5281/zenodo.10530732
Yulia, I. A., Mutmainah, I., Marnilin, F., & Mahfudi, A. Z. (2022). Pengaruh Kualitas Layanan Terhadap Kepuasan Pelaksanaan Program MBKM. Jurnal Ilmiah Manajemen Kesatuan, 10(3), 403–412. https://doi.org/10.37641/jimkes.v10i3.935





