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1. Introduction 

Early detection of leukemia, a type of blood cancer caused by hematological disorders, is 
critical for improving treatment outcomes and survival rates[1]. Conventional diagnostic 
methods, such as morphological assessments and MRI scans, are often invasive, time-consuming, 
and reliant on expert interpretation, which presents challenges for timely and accurate diagnosis 
[2], [3].  Recent advancements in machine learning (ML), particularly in feature selection using 

Abstract: Machine learning has the potential to support hematologists in classifying leukemia by 
identifying abnormal chromosomes and specific gene markers. One effective technique for feature 
selection is Variable-Length Particle Swarm Optimization (VLPSO), where its performance depends 
heavily on parameter control, specifically the inertia weight (w) and acceleration factors (c), which 
regulate the search process. In previous VLPSO, static types of parameter control were applied to the 
𝑐 Factor, and the w Factor used time-varying types. Although its results showed good performance in 
VLPSO, there was no separation in the treatment of training data and test data, leaving a gap in 
understanding their impacts for real-world applications.  This study examines the impact of various 
parameter control strategies (static, time-varying, and adaptive) on the performance of VLPSO, 
comparing it with two adaptive parameter control approaches, Adaptive1 and Adaptive2, within the 
VLPSO framework. Each approach is designed to dynamically adjust the control parameters w and c 
in distinct ways. The 10-fold cross-validation results show that VLPSO with an Adaptive one-parameter 
setting achieves better generalization, characterized by low train-test differences, especially in Decision 
Tree and Naïve Bayes classifiers, albeit with higher variability. Adaptive2 parameter setting of VLPSO 
offers more consistent results with narrower variability across different settings. Static methods are the 
least reliable, while time-varying controls show moderate but unstable performance. Adaptive 
parameter tuning is recommended to improve VLPSO's stability, flexibility, and classification accuracy 
in biomedical applications. The results provide recommendations for parameter settings using an 
adaptive approach that has been proven to enhance the performance of VLPSO. 
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Variable Length Particle Swarm Optimization (VLPSO), an enhancement of Particle Swarm 
Optimization (PSO), have shown promising results in supporting leukemia classification[5], with 
reported accuracies exceeding 80%–95% depending on the classifier[6],[7]. VLPSO allows each 
particle to adjust its feature subset length dynamically during the optimization process. This 
flexibility makes VLPSO especially effective for high-dimensional problems, such as gene 
selection in leukemia classification, thereby improving both accuracy and generalization[8]. 
However, prior VLPSO implementations mostly relied on static or time-varying parameter 
controls, without analyzing the generalization performance between training and testing data, thus 
limiting the practical reliability of VLPSO methods. Typically, VLPSO methods employ static or 
time-varying parameter controls without evaluating generalization between training and test data, 
leading to limited insights into real-world reliability.  By optimizing the selection of relevant 
features, PSO helps improve classification accuracy, with reported results typically ranging from 
80% to over 95% for SVM or KNN, depending on the dataset and classifier used[9], [10], [11]. 
This study proposes an improved VLPSO framework with two adaptive parameter control 
strategies, referred to as Adaptive1 and Adaptive2 parameter configuration, to optimize the 
control parameters, namely the inertia weight (w) and acceleration coefficient (c). The approach 
is validated through a 10-fold cross-validation using Leukemia gene expression datasets, with a 
focus on minimizing the train-test accuracy gaps across KNN, Decision Tree, and Naïve Bayes 
classifiers. The main contributions of this study are: 
• Adaptive strategies were integrated into VLPSO for Leukemia diagnosis to enhance the 

algorithm’s ability to adjust particle lengths during the optimization process.  
• Sensitivity analysis of VLPSO key parameters (w and c) to optimize PSO performance. This 

helps avoid premature convergence and ensures a balance between global exploration and 
local exploitation, crucial for feature selection in high-dimensional cancer data. 

• Finally, generalization between training and testing data will be evaluated to ensure that the 
proposed method delivers consistent classification accuracy across datasets and reliability for 
real-world applications. 

 
2.  Research Method 
2.1 Literature Review Related to Research Method 

PSO is one of the most well-regarded swarm-based algorithms in the literature, and a 
popular feature selection algorithm for GEP, wherein specific generated solutions randomly move 
within the search and work to obtain optimal solutions[12], [13]. Since Kennedy and Eberhart’s 
initial development of PSO, researchers have proposed variants of this algorithm related to 
optimizing the solution[14], [15]. The fundamental concept of PSO involves learning from 
neighbors' experiences through communicating the global best (gbest) information and integrating 
each individual's own experience[16]. The velocity updating formula in PSO consists of three 
main components: 𝑤, which helps balance exploration and exploitation; the cognitive component 
(𝑐1), which represents the particle’s memory of its best position; and the social component (𝑐2), 
which represents the influence of the swarm’s best-known position. Although the original PSO 
has demonstrated good optimization performance, these two challenges lead PSO to suffer 
severely from premature convergence, requiring substantial computational resources and limiting 
flexibility in searching for more optimal feature subsets [17], [18]. Firstly, when w and c are not 
properly set, it directly affects the algorithm's ability to explore and exploit the search space 
effectively. This can lead to poor optimization results, especially in complex or high-dimensional 
problems. Secondly, Traditional PSO typically operates with a fixed-length population where 
each particle represents a solution of equal dimension. These limitations can result in suboptimal 
feature selection and reduced classification accuracy in leukemia classification.  

A benchmark-constrained optimization problem was considered to study the sensitivity 
analysis of PSO parameter control by modifying each parameter individually, allowing particles 
to update their best historical solutions according to feasibility. The results of this research 
revealed that PSO was most sensitive to 𝑤 (the cognitive component) and c (the social 
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component). Modifying the PSO control parameters can help researchers further enhance the 
performance of PSO[19]. Moreover, a detailed exploration of the interactions among these 
parameters can provide valuable insights into balancing global exploration and local exploitation, 
which is essential for optimizing performance. Studies have shown that adjusting these parameters 
effectively can enhance PSO's ability to avoid local optima and achieve more robust convergence 
toward global solutions [20]. Adaptive control of these parameters ensures that PSO maintains 
reliable performance across different datasets, enhancing its generalization capabilities. By tuning 
parameters to be responsive to the current state of the algorithm, PSO can produce consistent and 
reliable results, strengthening its overall reliability and applicability in real-world optimization 
tasks. The accuracy obtained from training and testing data often shows discrepancies; this can 
be attributed to overfitting during the training phase. Training results alone cannot be relied upon 
to assess the effectiveness of the analysis. Classification accuracy must also be monitored on test 
data. There will be differences between training and testing outcomes, where a minor difference 
is currently considered indicative of better generalization [21], [22]. Generalization analysis can 
be conducted by examining the difference between training and testing performance using tools 
such as box plots and heatmaps, which visually highlight the variability and consistency in the 
results. 

The first modification introduced in PSO was the use of an inertia weight parameter in the 
initial PSO velocity update equation (wPSO), which consists of three classes: a constant value, a 
time-varying w strategy, and an adaptive strategy. The first class contains strategies where the 
value 𝑤 is constant during the search or is determined randomly, commonly between 0.2 and 1.0. 
In a fast local search with gbest resetting PSO (PSO-LSRG), bare bones PSO (BBPSO), and a 
variable number of dimensions PSO (VNDPSO) share the same parameter settings 𝑐!=𝑐"=2.0, 
with 𝑤 linearly decreasing from 0.9 to 0.4 [16], [23]. The second class 𝑤 is defined as a function 
of time referred to as a time-varying 𝑤 strategy. These methods are not considered adaptive since 
they do not monitor the situation of the particles in the search space, which typically start at a 
higher value and gradually decrease over iterations, with a common strategy of 𝑤 being 0.9 to 
0.4. A multi-information fusion “triple variables with iteration” inertia weight PSO (MFTIWPSO) 
utilized a time-varying function w with [wmax,wmin] = [0.5,1] [24]. In contrast, the linearly 
decreasing inertia weight (PSO-LDIW) was used with values of [0.9, 0.4] or [1.2, 0.9]. The 
random inertia weight PSO (PSO-RIW) was used [1,0.5] [20][25]. Variable length PSO (VLPSO) 
used 𝑐=1.49445 and time-varying 𝑤 linear decrease in [0.9,0.2] that became the focus of this 
research. The third class is adaptive 𝑤 strategies that use a feedback parameter to monitor the 
algorithm's state and adjust the inertia weight's value. Adaptive strategies often begin with an 
initial 𝑤 value, similar to time-varying strategies, and are modified 𝑤 based on feedback; this 
strategy could push 𝑤 towards lower values. A chaotic inertia weight (PSO-CIW) sets the update 
velocity with c1 equals 𝑐! = 𝑐" = 2.0. It uses the adaptive 𝑤 parameter determined by personal 
and global best locations [26]. The nonlinear inertia weight (PSO-NLIW) and an improved binary 
particle swarm optimization (IBPSO) enhanced 𝑐 and 𝑤 with linear fashion adaptation consisting 
of weighting inertia coefficient that computed and evaluated in each iteration to adjust the swarm 
finding the optimal location in the search space and improved the global search ability of the 
algorithm [27], [28], [29]. Since VLPSO currently employs a time-varying model, its integration 
of adaptive strategies represents a promising shift that could enhance its performance. 

Researchers also state that the research on fixed-length optimization is mature; most PSO-
based FS methods in the literature use the fixed-length representation, which has a length equal 
to the original number of population features and usually requires a significant amount of memory 
and computation time when applied to high-dimensional data. However, the research in variable-
length optimization is still in its infancy [30]. The concept of variable-length chromosomes 
inspired VLPSO in Genetic Algorithms (GAs) and variable-length black hole optimization 
(VLBHO) with its two modes, position, and fitness, that permit flexible solution representation 
and allow particles to have adaptable lengths during the optimization process. The original 
VLPSO enables particles to have different and shorter lengths, leading to greater optimality and 
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less computational load in VLPSO performance. Still, there was no separation in the treatment of 
training and test data, leaving a gap in understanding their impacts. This article also aims to study 
the sensitivity analysis of VLPSO using Leukemia cancer data in FS for early diagnosis and 
prognosis, to assess whether the generalization of experimental results is consistent between the 
training and testing data [31]. The remainder of the article is organized as follows. Section 2 
presents the method. Afterward, the experimental results and discussion are presented in Section 
3. Lastly, the conclusion and future works are presented in Section 4. 

 
2.2 System Model and Problem Formulation 

VLPSO (Variable-Length Particle Swarm Optimization) plays a crucial role in 
optimization tasks where flexibility in feature representation is essential, especially in high-
dimensional datasets such as those found in cancer research. Sensitivity analysis in this context is 
used to understand how variations in key parameters, such as 𝑤 and 𝑐, influence VLPSO's 
performance. By analyzing the sensitivity of these parameters, researchers can identify optimal 
settings that strike a balance between the algorithm's exploration and exploitation. This 
understanding ensures more consistent and reliable outcomes, which is essential for maintaining 
robust classification accuracy in medical data analysis. Integrating sensitivity analysis with 
VLPSO enables more adaptive and efficient parameter control, ultimately enhancing the 
algorithm's generalization and reliability in complex tasks, such as the classification of leukemia 
data. 

  
Figure 1. Research Framework for Parameter Setting in VLPSO for Leukemia Classification 

 
Figure 1 illustrates the use of VLPSO for feature selection in leukemia data classification. The 
process begins with input data from a microarray dataset containing 72 samples, followed by 
7,129 genes/features from the UCI Machine Learning repository at 
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html. The challenge of analyzing this high-
dimensional data is addressed by the VLPSO process, which starts with the initialization phase. 
This phase involves defining parameters such as the number of particles, division number, 
population size, and iteration count, as well as setting initial values for the personal best (pBest) 
and global best (gBest). The differentiation of the VLPSO algorithm from the original PSO lies 
in its improvements in particle length, feature ranking, and the dynamic adjustment of particle 
length during the feature selection process. Particles are not processed directly according to their 
full feature length, but are divided into divisions; each particle will have a different length based 
on this equation: 
 

𝐷𝑖𝑣𝑆𝑖𝑧𝑒 = 	#$%&'()
*+,-'.

        (1) 

𝑃𝑎𝑟𝐿𝑒𝑛. = 𝑀𝑎𝑥𝐿𝑒𝑛 ∗	 /
*+,-'.

      (2) 
 
The number of particles (or size) of each division (DivSize) is calculated based on the population 
size (PopSize) and the number of divisions (NbrDiv), as shown in (2). Particles in the same 
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division will have the same length. The length of particles in division V (ParLenV) is calculated 
based on (7), where the maximum length (MaxLen) is the dimensionality of the problem. 

VLPSO incorporates the same parameters as CLPSO, enhancing the algorithm's 
effectiveness by improving the probability of particle selection, division allocation, and division 
length adjustment, ultimately leading to faster calculations and better performance[13]. The 
control parameters in CLPSO, specifically the inertia weight w and the acceleration constant c, 
ensure uniform influence in particle updates. The following equation governs the iterative update 
of particle velocity. 

𝑥'012! =	𝑥'01 + 𝑣'012!       (3) 
 

𝑣'012! =	𝑤' ⋅ 𝑣'01 + 	𝑐	 ⋅ 𝑟'0 ⋅ 𝑝𝑏𝑒𝑠𝑡3!(#)
1 −	𝑥'01     (4) 

 
Where  𝑣'012! represents the velocity of particle i at dimension d, and iteration t+1, and 𝑤' 

 is the inertia weight. This velocity equation enables particles to learn from the best personal 
positions of other particles, fostering diversity and robustness in the learning process. The update 
includes a random factor 𝑟'0 in the range [0, 1], the best personal position 𝑝𝑏𝑒𝑠𝑡3!(#)

1  selected for 
particle i at dimension d, and the current position 𝑥'01 . The position of a particle is subsequently 
updated by adding its new velocity. VLPSO employed specific static values for 𝑐 = 1.49445 and 
used a time-varying type 𝑤, which influenced the search behavior over iterations using this 
updating w equation. 

𝑤 = 0.9 − 0.5 ∗ (45,,)61	'1),81'$6
'1),81'$6	

)     (5) 
 
For the next iteration, particle choosing is based on the probability of locating a better position or 
solution [26][27]. Particles should learn from particles with better fitness, and only those with 
better fitness should have a smaller Pc, allowing them to continue exploiting their good direction 
to find a better pbest. In contrast, the worst particles should learn from the better ones. The strategy 
adopted from comprehensive learning PSO (CLPSO) has shown promise in improving the 
performance of CLPSO for function optimization [32]. As shown in (6). 
 

𝑃𝑐𝑖 = 0.05 + 0.45 ⋅ C
)9%)9%	(%&('()*(!)+%),+% 	

)9%)9%	(!;)=!)	
D 	   (6) 

 
To rearrange features in the descending order of their relevance, the symmetric uncertainty (SU), 
since it is a nonparametric measure and commonly used in FS methods, can be used to arrange 
the features [29]. SU is a normalized information gain (IG) version to evaluate feature relevance. 
To rank features, we use SU, as shown in (6) and (7), to measure the correlation between feature 
F and the class label C. The higher the feature correlates with the class label, the better it is 

 
𝑆𝑈(𝐹, 𝐶) = I >?(@|B)

C(@)2C(B)
J       (7) 

 
𝐼𝐺(𝐶) = 𝐻(𝐹) − 𝐻(𝐶)	                   (8) 

 
Where 𝐻(𝐹) represents the entropy of the feature, 𝐻(𝐶) is the entropy of the class, and 𝐻(𝐹|𝐶) 
is the conditional entropy of the feature given the class. The higher the correlation measured 𝑆𝑈, 
the more relevant the feature is deemed for classification purposes. 

The process automatically changes the particles’ length by cutting or appending more 
dimensions at the end of the representation while keeping the learned knowledge in the other 
dimensions. The number of dimensions being cut or appended is dynamically calculated based 
on the new length and the current length.  
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Figure 2. Example of length changing in a swarm with five divisions[33]. 

 
Figure 2 illustrates this process with a swarm comprising five divisions. Initially, the particle 
lengths of divisions 1, 2, 3, 4, and 5 are 1000, 2000, 3000, 4000, and 5000, respectively. Suppose 
the third division is the best division with the highest average fitness; it is kept unchanged, and 
3000 becomes the new maximum length of the swarm. However, the particle length of divisions 
1, 2, 4, and 5 will be changed to 600, 1200, 1800, and 2400, respectively. Therefore, the last 400, 
800, 2200, and 2600 dimensions will be cut in particle representations of divisions 1, 2, 4, and 5, 
respectively. 

These configurations are essential for ensuring that the algorithm can effectively navigate 
and explore the search space, adapting dynamically to optimize the feature selection process. The 
unique length-changing procedure embedded in VLPSO modifies the particle lengths throughout 
the search, thereby reducing the feature set to a more manageable size (e.g., 198 marker genes), 
which is crucial for building efficient and effective models. Figure 1 highlights the velocity update 
equation in VLPSO, which involves 𝑤 and 𝑐. These parameters are a focal point of the research, 
aimed at determining their impact on the algorithm's ability to balance exploration and 
exploitation. In previous studies, VLPSO employed specific static values for 𝑐 = 1.49445 and 
used a time-varying type for 𝑤, which influenced the search behavior over iterations. This 
research examines how various approaches, including adaptive strategies, can enhance the 
generalization and performance of VLPSO. The inertia weight 𝑤 will be adjusted to an adaptive 
type, and this modification will be elaborated on in Figure 3. After the feature selection stage 
identifies marker genes, these selected features are fed into classification algorithms, such as K-
Nearest Neighbors (KNN), Decision Trees, and Naïve Bayes, for data training and data testing to 
evaluate classification accuracy. The final step in the process involves determining the 
classification performance, with the goal of distinguishing between ALL and AML leukemia 
types.  

 
2.3 Proposed Adaptive VLPSO Method 

Figure 3 presents a comprehensive overview of the standard VLPSO procedure and 
introduces modifications for sensitivity analysis focused on parameter adjustments, specifically 
𝑤, and 𝑐. The VLPSO standard procedure, as shown on the left side of the figure, includes 
initialization, velocity and position updates, feature ranking, pbest, and gbest updates. This setup 
establishes the foundation for feature selection by optimizing the swarm's movement within a 
defined search space.  On the right side, new adaptive methods for updating 𝑤 are shown, derived 
from various PSO algorithm strategies. The 𝑤 value of VLPSO is adjusted using two adaptive 
equations derived from PSO variants: PSO Chaotic Inertia Weight (PSO-CIW) and Non-Linear 
Inertia Weight (PSO-NLIW)[19]. The original VLPSO algorithm uses a time-varying 𝑤 
parameter that decreases linearly according to equation (9): 

 
𝑤	 = 	0: 9	 − 	0: 5	 ∗ 45,,)61	'1),81'$6

D89	'1),81'$6
     (9) 
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Figure 3. Research Design for Parameter Optimization in VLPSO 

 
This linear decrease aims to balance exploration and exploitation throughout the optimization 
process. The PSO-CIW approach is modified 𝑤 through an adaptive mechanism that incorporates 
chaotic sequences. Its equation is: 
 

𝑤(𝑡) = 	(𝑤E89	 − 	𝑤E'6) ∗ 𝑃𝑠(𝑡) + 	𝑤E'6    (10) 
 
where 𝑃𝑠(𝑡) is a function of time that dynamically influences the weight, enabling the algorithm 
to explore the search space more effectively and avoid premature convergence; on the other hand, 
the PSO-NLIW method introduces a non-linear adaptation for w using the equation: 
 

𝑤(F) = P(G-(.=G-!))×(D89*=F)
(D89*)

+𝑤E'6Q × 𝑧F    (11) 
 

𝑧F = 𝛼	 × 	𝑧F=! × (1 − 𝑧F=!)       (12) 
 

Where 𝑧F represents the current value of the chaotic variable at iteration k, 𝛼 is a scaling factor 
or constant that influences the rate of change, or the magnitude of the adjustments applied to the 
variable 𝑧F. This 	𝑧F=! is the value of the chaotic variable from the previous iteration. 1 − 𝑧F=! 
is the term complement 𝑧F=! by considering its inverse relationship within the update equation. 
It ensures that the product 𝑧F is non-linear and introduces complexity to the adjustments, 
preventing repetitive or overly predictable changes. This non-linear weight adjustment considers 
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the state of the swarm and enhances the exploration capabilities while maintaining a balance with 
exploitation as the optimization progresses. These adaptive strategies have been proven in 
previous research to significantly improve the performance of PSO by adjusting 𝑤 dynamically.  

In PSO, the acceleration coefficient c plays a crucial role in balancing the exploration and 
exploitation of the search space. For standard VLPSO, the values of c1, c2, and c are set to 1.4495. 
This research examines the use of c values applied in previous PSO research, adapted for VLPSO, 
including c = 1, 1.2, 1.4, 1.4495, 1.6, 1.8, and 2. These modifications are incorporated to test 
whether adaptive adjustments to 𝑤 and 𝑐 can improve VLPSO’s balance between global 
exploration and local exploitation. The c values to be used are selected based on the 
recommendations from previous studies that the sum of c1 and c2 for PSO should not exceed 4, 
such as those used in Binary Particle Swarm Optimization (BPSO), where 𝑐! = 𝑐" = 2[34], 
which is also applied in Hybrid Particle Swarm Optimization integrating a novel local search 
strategy (HPSO-LS)[35], Bare bones particle swarm optimization (BBPSO)[36], bare-bones 
PSO-based multi-objective evolutionary algorithm (BBMOPSO-A), and a fast “local search” 
combined with a gbest resetting mechanism (PSO-LSRG)[37]. The range of the value of c is 
obtained with a range of 0.9 to 1.90 for the variable number of dimensions in PSO (VNDPSO) 
[38], [39]. Random value with range [1.5,2.0] used in Crowding, mutation, and e-dominance PSO 
(CMDPSO), and the range [1.75,2.0] used for an improved binary particle swarm optimization 
(IBPSO) [38], [39]. The value of c 1.4495 is recommended from Internet protocol PSO (IPPSO), 
PSO with initialization pbest and gbest (PSOIniPG), non-dominating sorting PSO (NSPSOFS), 
and PSO Mutual Information (PSOMI) & PSO entropy (PSOE) [12], [28], [35], [36], [37], [40], 
[41]. It is important to note that the standard VLPSO also employs a static c value of 1.4495, 
serving as the standard reference for comparison. These are incorporated to test whether adaptive 
adjustments to 𝑤 and 𝑐 can improve VLPSO’s balance between global exploration and local 
exploitation. The outcomes will be validated through K-fold cross-validation and tested with 
classifiers such as KNN, Decision Trees, and Naïve Bayes to evaluate the generalization and 
reliability of the performance on training and testing data. This investigation aims to demonstrate 
whether an adaptive w configuration contributes to enhanced performance in terms of reduced 
variance and improved reliability of classification results for VLPSO in early leukemia diagnosis. 

 
3. Results and Discussion 

The study aims to identify patterns of the parameter 𝑤 to 𝑐 determine which performs better 
compared to the standard VLPSO, which uses a time-varying type of 𝑤 static	𝑐 = 1.49445. A 
comparative analysis was conducted using boxplots and heatmaps to visualize and assess the 
stability, consistency, and generalization performance of each method. 

 
3.1 Quantitative Evaluation of Generalization Performance 

Table 1 below displays the training and testing accuracy values for the configurations of 
Adaptive1, Adaptive2, Time-varying, and Static for various values of static 𝑐. It also provides the 
difference between train and test accuracy (Train-Test) for each combination, which indicates the 
generalization performance of each method. A more minor Train-Test difference indicates better 
generalization. The count of the best Train-Test is at the bottom of the comparison table, 
indicating the number of times each method achieved the lowest Train-Test difference across the 
𝑐 values. 
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Table 1. Data training and testing differences in accuracy for KNN classification 

 
Based on Table 1 above, for KNN classification, Adaptive1, Static, and Adaptive2 

demonstrate the best balance between generalization and consistency. Static achieves the smallest 
Train-Test Difference at 𝑐 = 1, and Adaptive2, maintaining stable performance across multiple 𝑐 
values. This indicates that these two models are more reliable for achieving consistent 
generalization across various parameter settings. Adaptive1, while showing strong generalization 
at one optimal point, 𝑐 = 1.2 lacks consistency in its performance across the board. On the other 
hand, time-varying exhibits poor generalization capabilities, with larger Train-Test differences at 
all c values, suggesting that this model may not be suitable for tasks requiring strong 
generalization. Additionally, when examining the best Train-Test values, Adaptive2 and Static 
achieve the lowest difference in all three cases, reinforcing their reliability and consistent 
performance. Overall, for applications where consistency and robustness are crucial in KNN 
classification, Static and Adaptive2 appear to be the better choices among the options analyzed. 

 

Table 2. Data training and testing differences in accuracy for the Decision Tree classification 

 
Based on Table 2 above for Decision tree classification, Adaptive1 configuration 

demonstrates the best generalization performance, achieving the lowest Train-Test Differences in 
5 out of 6 cases and dominating as the most robust model across different parameter settings, with 
its most minor difference at 𝑐 = 1 (i.e., Train-Test = 8.28), indicating strong and consistent 
generalization. Adaptive 2 shows moderate generalization, with its best difference at 𝑐 = 1.6 (i.e., 
Train-Test = 7.52) but is less consistent. It achieves only one best Train-Test count: Time-Varying 
shows limited performance, with only one competitive result at 𝑐 = 1.8 (i.e., Train-Test = 7.52). 
In contrast, Static consistently shows a larger Train-Test Difference, with its best at 𝑐 = 1.2 (i.e., 
Train-Test = 11.44). Adaptive1 is the preferred model for tasks needing reliable generalization 
and consistency for decision tree classification. 
 

Table 3. Data training and testing differences in accuracy for Naïve Bayes classification 
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Based on Table 3, Adaptive1 shows the strongest generalization capability, achieving the 
lowest Train-Test Differences in 4 out of 6 cases, with its best difference at 𝑐 = 1 (i.e., Train-Test 
= 2.86). This indicates that Adaptive1 is consistent and reliable for classification tasks requiring 
strong generalization. Adaptive 2 also performs well but is less consistent, with its best Train-
Test Difference at 𝑐 = 1.8 (i.e., Train-Test = 4.17) and achieving the best results in 3 cases. Time-
varying shows moderate performance with the three best Train-Test counts, indicating it can 
generalize effectively under certain conditions, with its best result at 𝑐 = 1.4 (i.e., Train-Test = 
3.75). Static has only one count of the best Train-Test Difference at c=1.2 (i.e., Train-Test = 3.27), 
suggesting that it is less reliable overall. For this Naïve Bayes Classification, the count of the best 
Train-Test highlights Adaptive 1's consistency, making it the most robust model, while Static lags 
in comparison. 
 
3.2 Statistical and Variability Analysis Using Boxplots 

Regarding the Quartile Range, median, mode, and average of the difference between train 
and test accuracy in the boxplot based on Figure 4, the comparison of the KNN, Decision Tree, 
and Naïve Bayes classifiers reveals distinct patterns in the performance of each method. These 
patterns provide insights into the variability and consistency of each method's generalization 
across different classifiers. 

 

   
KNN Decision tree Naïve bayes 

Figure 4. Boxplot comparison of all classifiers 
 

 
Adaptive1 frequently shows the lowest median Train-Test accuracy differences in the 

boxplots, highlighting its potential to deliver better generalization performance under certain 
conditions. This indicates that Adaptive1 can effectively minimize both overfitting and 
underfitting, which is valuable for achieving optimal outcomes in specific applications. However, 
the wider interquartile range (IQR) and greater variability compared to the other methods suggest 
that Adaptive1 may not provide consistent reliability across all scenarios. In comparison, 
Adaptive2 demonstrates a more stable and narrower IQR with fewer outliers, indicating consistent 
performance, although its median Train-Test difference is often slightly higher than that of 
Adaptive1. Time-varying shows moderate performance with variability and occasional outliers, 
suggesting inconsistent generalization. In contrast, Static generally has the widest IQR and more 
outliers, indicating high variability and less dependable results. Overall, while Adaptive1 is strong 
for achieving the lowest differences when optimal conditions are met, Adaptive 2 stands out for 
its stability, making it preferable when consistent generalization is needed. Time-varying and 
Static exhibit more variability, making them less ideal for reliable performance. 
 

 
3.3 Visualization of Generalization Trends Using Heatmaps 

The heatmap analysis provides a comprehensive visualization of Train-Test accuracy 
differences for each method across various classifiers and 𝑐 values. By examining these heatmaps, 
it becomes easier to identify patterns in generalization performance and pinpoint the conditions 
under which each method performs optimally. This section delves into the comparative 
configuration performance of Adaptive1, Adaptive2, Time-varying, and Static methods across the 
KNN, Decision Tree, and Naïve Bayes classifiers. 
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KNN Decision tree Naïve bayes 

Figure 5. Heatmap comparison of all classifiers 
 

Based on the heatmaps in Figure 5 for KNN, Decision Tree, and Naïve Bayes, Adaptive1 
generally shows the lowest Train-Test accuracy differences, for specific 𝑐 values like 𝑐 = 1.2 in 
KNN and 𝑐 = 1 in Naïve Bayes, it indicates strong generalization under particular conditions.  

 
3.1 Discussion  
This finding aligns with [42], and [43], which showed that adaptive tuning methods can optimize 
classifier generalization by dynamically adjusting parameter sensitivity. Adaptive2 displays 
consistent moderate performance across all classifiers without major peaks or troughs, suggesting 
stable generalization but not consistently the best results, which is consistent with the stable 
convergence behavior reported in[44]. Meanwhile, time-varying strategies exhibit varied 
performance with occasional low accuracy differences, but also higher variability, echoing the 
instability noted in [45] for non-adaptive control strategies. Static methods perform less reliably 
overall, supporting prior findings that fixed parameters often fail to accommodate dataset-specific 
dynamics. Overall, Adaptive1 appears most effective in achieving low Train-Test differences 
when optimal c values are met; Adaptive2 is preferable for consistent and reliable generalization 
across different scenarios. 

 
5. Conclusions 

This study uses tables, boxplots, and heatmaps to compare the generalization, consistency, 
and variability of different VLPSO parameter settings for leukemia classification. The adaptive 
1-parameter setting achieves the lowest Train-Test differences, especially with Decision Tree and 
Naïve Bayes, indicating strong generalization. However, its wider IQR shows higher variability. 
In contrast, the Adaptive2-parameter configuration demonstrates better consistency, with a 
narrower IQR and more stable performance across various settings. Time-varying methods show 
moderate, less consistent outcomes, while static methods perform the worst. These findings 
suggest that adaptive tuning for VLPSO parameters (w and c) enhances both generalization and 
stability. Such improvements are valuable for designing robust and accurate medical classification 
systems, especially in bioinformatics and clinical decision support tools. 

The heat maps further emphasize that the Adaptive1 parameter setting is effective under 
specific conditions and achieves the lowest Train-Test differences. At the same time, the 
Adaptive2 is reliable for maintaining stability across different scenarios. These findings suggest 
that adaptive parameter settings, such as those used in Adaptive 1, are beneficial for optimizing 
VLPSO, as they improve performance and generalization under varying conditions. It is 
recommended to use adaptive parameter tuning for 𝑤 and 𝑐 VLPSO to achieve better overall 
consistency and generalization, balancing flexibility and stability in optimization tasks. 
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