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Abstract: Machine learning has the potential to support hematologists in classifying leukemia by
identifying abnormal chromosomes and specific gene markers. One effective technique for feature
selection is Variable-Length Particle Swarm Optimization (VLPSO), where its performance depends
heavily on parameter control, specifically the inertia weight (w) and acceleration factors (c), which
regulate the search process. In previous VLPSO, static types of parameter control were applied to the
¢ Factor, and the w Factor used time-varying types. Although its results showed good performance in
VLPSO, there was no separation in the treatment of training data and test data, leaving a gap in
understanding their impacts for real-world applications. This study examines the impact of various
parameter control strategies (static, time-varying, and adaptive) on the performance of VLPSO,
comparing it with two adaptive parameter control approaches, Adaptivel and Adaptive2, within the
VLPSO framework. Each approach is designed to dynamically adjust the control parameters w and ¢
in distinct ways. The 10-fold cross-validation results show that VLPSO with an Adaptive one-parameter
setting achieves better generalization, characterized by low train-test differences, especially in Decision
Tree and Naive Bayes classifiers, albeit with higher variability. Adaptive2 parameter setting of VLPSO
offers more consistent results with narrower variability across different settings. Static methods are the
least reliable, while time-varying controls show moderate but unstable performance. Adaptive
parameter tuning is recommended to improve VLPSO's stability, flexibility, and classification accuracy
in biomedical applications. The results provide recommendations for parameter settings using an
adaptive approach that has been proven to enhance the performance of VLPSO.

Keywords: Leukemia Classification, Variable-Length Particle Swarm Optimization (VLPSO), Adaptive
Parameter Control, Generalization Consistency, Parameter Sensitivity Analysis

1. Introduction

Early detection of leukemia, a type of blood cancer caused by hematological disorders, is
critical for improving treatment outcomes and survival rates[1]. Conventional diagnostic
methods, such as morphological assessments and MRI scans, are often invasive, time-consuming,
and reliant on expert interpretation, which presents challenges for timely and accurate diagnosis
[2]. [3]. Recent advancements in machine learning (ML), particularly in feature selection using
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Variable Length Particle Swarm Optimization (VLPSO), an enhancement of Particle Swarm

Optimization (PSO), have shown promising results in supporting leukemia classification[5], with

reported accuracies exceeding 80%—95% depending on the classifier[6],[7]. VLPSO allows each

particle to adjust its feature subset length dynamically during the optimization process. This
flexibility makes VLPSO especially effective for high-dimensional problems, such as gene
selection in leukemia classification, thereby improving both accuracy and generalization[8].

However, prior VLPSO implementations mostly relied on static or time-varying parameter

controls, without analyzing the generalization performance between training and testing data, thus

limiting the practical reliability of VLPSO methods. Typically, VLPSO methods employ static or
time-varying parameter controls without evaluating generalization between training and test data,
leading to limited insights into real-world reliability. By optimizing the selection of relevant
features, PSO helps improve classification accuracy, with reported results typically ranging from

80% to over 95% for SVM or KNN, depending on the dataset and classifier used[9], [10], [11].

This study proposes an improved VLPSO framework with two adaptive parameter control

strategies, referred to as Adaptivel and Adaptive2 parameter configuration, to optimize the

control parameters, namely the inertia weight (w) and acceleration coefficient (c). The approach

is validated through a 10-fold cross-validation using Leukemia gene expression datasets, with a

focus on minimizing the train-test accuracy gaps across KNN, Decision Tree, and Naive Bayes

classifiers. The main contributions of this study are:

e Adaptive strategies were integrated into VLPSO for Leukemia diagnosis to enhance the
algorithm’s ability to adjust particle lengths during the optimization process.

o Sensitivity analysis of VLPSO key parameters (w and ¢) to optimize PSO performance. This
helps avoid premature convergence and ensures a balance between global exploration and
local exploitation, crucial for feature selection in high-dimensional cancer data.

e Finally, generalization between training and testing data will be evaluated to ensure that the
proposed method delivers consistent classification accuracy across datasets and reliability for
real-world applications.

2. Research Method
2.1 Literature Review Related to Research Method

PSO is one of the most well-regarded swarm-based algorithms in the literature, and a
popular feature selection algorithm for GEP, wherein specific generated solutions randomly move
within the search and work to obtain optimal solutions[12], [13]. Since Kennedy and Eberhart’s
initial development of PSO, researchers have proposed variants of this algorithm related to
optimizing the solution[14], [15]. The fundamental concept of PSO involves learning from
neighbors' experiences through communicating the global best (gbest) information and integrating
each individual's own experience[16]. The velocity updating formula in PSO consists of three
main components: w, which helps balance exploration and exploitation; the cognitive component
(c1), which represents the particle’s memory of its best position; and the social component (c2),
which represents the influence of the swarm’s best-known position. Although the original PSO
has demonstrated good optimization performance, these two challenges lead PSO to suffer
severely from premature convergence, requiring substantial computational resources and limiting
flexibility in searching for more optimal feature subsets [17], [18]. Firstly, when w and ¢ are not
properly set, it directly affects the algorithm's ability to explore and exploit the search space
effectively. This can lead to poor optimization results, especially in complex or high-dimensional
problems. Secondly, Traditional PSO typically operates with a fixed-length population where
each particle represents a solution of equal dimension. These limitations can result in suboptimal
feature selection and reduced classification accuracy in leukemia classification.

A benchmark-constrained optimization problem was considered to study the sensitivity
analysis of PSO parameter control by modifying each parameter individually, allowing particles
to update their best historical solutions according to feasibility. The results of this research
revealed that PSO was most sensitive to w (the cognitive component) and ¢ (the social




60 WDigital Zone: Jurnal Teknologi Informasi dan Komunikasi, Volume 16, Issue 2, November 2025 : 58-71

component). Modifying the PSO control parameters can help researchers further enhance the
performance of PSO[19]. Moreover, a detailed exploration of the interactions among these
parameters can provide valuable insights into balancing global exploration and local exploitation,
which is essential for optimizing performance. Studies have shown that adjusting these parameters
effectively can enhance PSO's ability to avoid local optima and achieve more robust convergence
toward global solutions [20]. Adaptive control of these parameters ensures that PSO maintains
reliable performance across different datasets, enhancing its generalization capabilities. By tuning
parameters to be responsive to the current state of the algorithm, PSO can produce consistent and
reliable results, strengthening its overall reliability and applicability in real-world optimization
tasks. The accuracy obtained from training and testing data often shows discrepancies; this can
be attributed to overfitting during the training phase. Training results alone cannot be relied upon
to assess the effectiveness of the analysis. Classification accuracy must also be monitored on test
data. There will be differences between training and testing outcomes, where a minor difference
is currently considered indicative of better generalization [21], [22]. Generalization analysis can
be conducted by examining the difference between training and testing performance using tools
such as box plots and heatmaps, which visually highlight the variability and consistency in the
results.

The first modification introduced in PSO was the use of an inertia weight parameter in the
initial PSO velocity update equation (WPSO), which consists of three classes: a constant value, a
time-varying w strategy, and an adaptive strategy. The first class contains strategies where the
value w is constant during the search or is determined randomly, commonly between 0.2 and 1.0.
In a fast local search with gbest resetting PSO (PSO-LSRG), bare bones PSO (BBPSO), and a
variable number of dimensions PSO (VNDPSO) share the same parameter settings c;=c,=2.0,
with w linearly decreasing from 0.9 to 0.4 [16], [23]. The second class w is defined as a function
of time referred to as a time-varying w strategy. These methods are not considered adaptive since
they do not monitor the situation of the particles in the search space, which typically start at a
higher value and gradually decrease over iterations, with a common strategy of w being 0.9 to
0.4. A multi-information fusion “triple variables with iteration” inertia weight PSO (MFTIWPSO)
utilized a time-varying function w with [Wmax,Wmin] = [0.5,1] [24]. In contrast, the linearly
decreasing inertia weight (PSO-LDIW) was used with values of [0.9, 0.4] or [1.2, 0.9]. The
random inertia weight PSO (PSO-RIW) was used [1,0.5] [20][25]. Variable length PSO (VLPSO)
used ¢=1.49445 and time-varying w linear decrease in [0.9,0.2] that became the focus of this
research. The third class is adaptive w strategies that use a feedback parameter to monitor the
algorithm's state and adjust the inertia weight's value. Adaptive strategies often begin with an
initial w value, similar to time-varying strategies, and are modified w based on feedback; this
strategy could push w towards lower values. A chaotic inertia weight (PSO-CIW) sets the update
velocity with ¢l equals ¢; = ¢, = 2.0. It uses the adaptive w parameter determined by personal
and global best locations [26]. The nonlinear inertia weight (PSO-NLIW) and an improved binary
particle swarm optimization (IBPSO) enhanced ¢ and w with linear fashion adaptation consisting
of weighting inertia coefficient that computed and evaluated in each iteration to adjust the swarm
finding the optimal location in the search space and improved the global search ability of the
algorithm [27], [28], [29]. Since VLPSO currently employs a time-varying model, its integration
of adaptive strategies represents a promising shift that could enhance its performance.

Researchers also state that the research on fixed-length optimization is mature; most PSO-
based FS methods in the literature use the fixed-length representation, which has a length equal
to the original number of population features and usually requires a significant amount of memory
and computation time when applied to high-dimensional data. However, the research in variable-
length optimization is still in its infancy [30]. The concept of variable-length chromosomes
inspired VLPSO in Genetic Algorithms (GAs) and variable-length black hole optimization
(VLBHO) with its two modes, position, and fitness, that permit flexible solution representation
and allow particles to have adaptable lengths during the optimization process. The original
VLPSO enables particles to have different and shorter lengths, leading to greater optimality and
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less computational load in VLPSO performance. Still, there was no separation in the treatment of
training and test data, leaving a gap in understanding their impacts. This article also aims to study
the sensitivity analysis of VLPSO using Leukemia cancer data in FS for early diagnosis and
prognosis, to assess whether the generalization of experimental results is consistent between the
training and testing data [31]. The remainder of the article is organized as follows. Section 2
presents the method. Afterward, the experimental results and discussion are presented in Section
3. Lastly, the conclusion and future works are presented in Section 4.

2.2 System Model and Problem Formulation

VLPSO (Variable-Length Particle Swarm Optimization) plays a crucial role in
optimization tasks where flexibility in feature representation is essential, especially in high-
dimensional datasets such as those found in cancer research. Sensitivity analysis in this context is
used to understand how variations in key parameters, such as w and c, influence VLPSO's
performance. By analyzing the sensitivity of these parameters, researchers can identify optimal
settings that strike a balance between the algorithm's exploration and exploitation. This
understanding ensures more consistent and reliable outcomes, which is essential for maintaining
robust classification accuracy in medical data analysis. Integrating sensitivity analysis with
VLPSO enables more adaptive and efficient parameter control, ultimately enhancing the
algorithm's generalization and reliability in complex tasks, such as the classification of leukemia
data.

- VLPSO for Feature selection of Leukemia data

cancer dataset VLPSO Process Length Changing Procedure

Classification

Feature selection acuracy
R Result : Marker genes
Initialization:
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Figure 1. Research Framework for Parameter Setting in VLPSO for Leukemia Classification

Figure 1 illustrates the use of VLPSO for feature selection in leukemia data classification. The
process begins with input data from a microarray dataset containing 72 samples, followed by
7,129  genes/features  from the  UCI  Machine  Learning  repository  at
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html. The challenge of analyzing this high-
dimensional data is addressed by the VLPSO process, which starts with the initialization phase.
This phase involves defining parameters such as the number of particles, division number,
population size, and iteration count, as well as setting initial values for the personal best (pBest)
and global best (gBesf). The differentiation of the VLPSO algorithm from the original PSO lies
in its improvements in particle length, feature ranking, and the dynamic adjustment of particle
length during the feature selection process. Particles are not processed directly according to their
full feature length, but are divided into divisions; each particle will have a different length based
on this equation:

PopSize
— (D
NbrDiv

ParLen, = MaxLen *

DivSize =

NbrDiv (2)

The number of particles (or size) of each division (DivSize) is calculated based on the population
size (PopSize) and the number of divisions (NbrDiv), as shown in (2). Particles in the same
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division will have the same length. The length of particles in division V (ParLenV) is calculated
based on (7), where the maximum length (MaxLen) is the dimensionality of the problem.

VLPSO incorporates the same parameters as CLPSO, enhancing the algorithm's
effectiveness by improving the probability of particle selection, division allocation, and division
length adjustment, ultimately leading to faster calculations and better performance[13]. The
control parameters in CLPSO, specifically the inertia weight w and the acceleration constant c,
ensure uniform influence in particle updates. The following equation governs the iterative update
of particle velocity.

t+1 __ t t+1

Xig = Xig t Vig 3)
t+1 _ t t t

Vig = Wj-Vjg+ ¢ Tig -pbestfi(d) - Xig 4)

Where v/} represents the velocity of particle i at dimension d, and iteration #+1, and w;

is the inertia weight. This velocity equation enables particles to learn from the best personal
positions of other particles, fostering diversity and robustness in the learning process. The update
includes a random factor 1;4 in the range [0, 1], the best personal position pbest}i @ selected for

particle i at dimension d, and the current position x;. The position of a particle is subsequently
updated by adding its new velocity. VLPSO employed specific static values for ¢ = 1.49445 and
used a time-varying type w, which influenced the search behavior over iterations using this

updating w equation.
current iteration

w=09—-0.5x*( ) (5)

iteration
For the next iteration, particle choosing is based on the probability of locating a better position or
solution [26][27]. Particles should learn from particles with better fitness, and only those with
better fitness should have a smaller Pc, allowing them to continue exploiting their good direction
to find a better pbest. In contrast, the worst particles should learn from the better ones. The strategy
adopted from comprehensive learning PSO (CLPSO) has shown promise in improving the
performance of CLPSO for function optimization [32]. As shown in (6).

10(rank(i)—1)

. expexp ( =
Pci =0.05+ 0.45 - { p— TS } (6)

To rearrange features in the descending order of their relevance, the symmetric uncertainty (SU),
since it is a nonparametric measure and commonly used in FS methods, can be used to arrange
the features [29]. SU is a normalized information gain (IG) version to evaluate feature relevance.
To rank features, we use SU, as shown in (6) and (7), to measure the correlation between feature
F and the class label C. The higher the feature correlates with the class label, the better it is

SUF,0) =[] ™
16(C) = H(F) — H(C) (8)

Where H (F) represents the entropy of the feature, H(C) is the entropy of the class, and H(F|C)
is the conditional entropy of the feature given the class. The higher the correlation measured SU,
the more relevant the feature is deemed for classification purposes.

The process automatically changes the particles’ length by cutting or appending more
dimensions at the end of the representation while keeping the learned knowledge in the other
dimensions. The number of dimensions being cut or appended is dynamically calculated based
on the new length and the current length.
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Figure 2. Example of length changing in a swarm with five divisions[33].

Figure 2 illustrates this process with a swarm comprising five divisions. Initially, the particle
lengths of divisions 1, 2, 3, 4, and 5 are 1000, 2000, 3000, 4000, and 5000, respectively. Suppose
the third division is the best division with the highest average fitness; it is kept unchanged, and
3000 becomes the new maximum length of the swarm. However, the particle length of divisions
1,2, 4, and 5 will be changed to 600, 1200, 1800, and 2400, respectively. Therefore, the last 400,
800, 2200, and 2600 dimensions will be cut in particle representations of divisions 1, 2, 4, and 5,
respectively.

These configurations are essential for ensuring that the algorithm can effectively navigate
and explore the search space, adapting dynamically to optimize the feature selection process. The
unique length-changing procedure embedded in VLPSO modifies the particle lengths throughout
the search, thereby reducing the feature set to a more manageable size (e.g., 198 marker genes),
which is crucial for building efficient and effective models. Figure 1 highlights the velocity update
equation in VLPSO, which involves w and c. These parameters are a focal point of the research,
aimed at determining their impact on the algorithm's ability to balance exploration and
exploitation. In previous studies, VLPSO employed specific static values for ¢ = 1.49445 and
used a time-varying type for w, which influenced the search behavior over iterations. This
research examines how various approaches, including adaptive strategies, can enhance the
generalization and performance of VLPSO. The inertia weight w will be adjusted to an adaptive
type, and this modification will be elaborated on in Figure 3. After the feature selection stage
identifies marker genes, these selected features are fed into classification algorithms, such as K-
Nearest Neighbors (KNN), Decision Trees, and Naive Bayes, for data training and data testing to
evaluate classification accuracy. The final step in the process involves determining the
classification performance, with the goal of distinguishing between ALL and AML leukemia

types.

2.3 Proposed Adaptive VLPSO Method

Figure 3 presents a comprehensive overview of the standard VLPSO procedure and
introduces modifications for sensitivity analysis focused on parameter adjustments, specifically
w, and c. The VLPSO standard procedure, as shown on the left side of the figure, includes
initialization, velocity and position updates, feature ranking, pbest, and gbest updates. This setup
establishes the foundation for feature selection by optimizing the swarm's movement within a
defined search space. On the right side, new adaptive methods for updating w are shown, derived
from various PSO algorithm strategies. The w value of VLPSO is adjusted using two adaptive
equations derived from PSO variants: PSO Chaotic Inertia Weight (PSO-CIW) and Non-Linear
Inertia Weight (PSO-NLIW)[19]. The original VLPSO algorithm uses a time-varying w
parameter that decreases linearly according to equation (9):

W = 0:9 — :5 «SMrrentiteration o

Max iteration
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Figure 3. Research Design for Parameter Optimization in VLPSO

This linear decrease aims to balance exploration and exploitation throughout the optimization
process. The PSO-CIW approach is modified w through an adaptive mechanism that incorporates
chaotic sequences. Its equation is:

w(t) = Wmax —

Wmin) * PS(t) + Wnin

(10)

where Ps(t) is a function of time that dynamically influences the weight, enabling the algorithm
to explore the search space more effectively and avoid premature convergence; on the other hand,
the PSO-NLIW method introduces a non-linear adaptation for w using the equation:

W(k) = ((Wmax—Wmin)X(Maxk—k)
(Maxk)

zF=a x zF"1x (1 -zF1)

+ Wmin) x zk

(11

(12)

Where z* represents the current value of the chaotic variable at iteration k, a is a scaling factor
or constant that influences the rate of change, or the magnitude of the adjustments applied to the
variable z¥. This z*~! is the value of the chaotic variable from the previous iteration. 1 — z¥~1
is the term complement z¥~1 by considering its inverse relationship within the update equation.
It ensures that the product z® is non-linear and introduces complexity to the adjustments,
preventing repetitive or overly predictable changes. This non-linear weight adjustment considers
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the state of the swarm and enhances the exploration capabilities while maintaining a balance with
exploitation as the optimization progresses. These adaptive strategies have been proven in
previous research to significantly improve the performance of PSO by adjusting w dynamically.

In PSO, the acceleration coefficient ¢ plays a crucial role in balancing the exploration and
exploitation of the search space. For standard VLPSO, the values of ¢;, ¢z, and ¢ are set to 1.4495.
This research examines the use of ¢ values applied in previous PSO research, adapted for VLPSO,
including ¢ = 1, 1.2, 1.4, 1.4495, 1.6, 1.8, and 2. These modifications are incorporated to test
whether adaptive adjustments to w and ¢ can improve VLPSO’s balance between global
exploration and local exploitation. The ¢ values to be used are selected based on the
recommendations from previous studies that the sum of c1 and ¢2 for PSO should not exceed 4,
such as those used in Binary Particle Swarm Optimization (BPSO), where ¢; = ¢, = 2[34],
which is also applied in Hybrid Particle Swarm Optimization integrating a novel local search
strategy (HPSO-LS)[35], Bare bones particle swarm optimization (BBPSO)[36], bare-bones
PSO-based multi-objective evolutionary algorithm (BBMOPSO-A), and a fast “local search”
combined with a gbest resetting mechanism (PSO-LSRG)[37]. The range of the value of c is
obtained with a range of 0.9 to 1.90 for the variable number of dimensions in PSO (VNDPSO)
[38], [39]. Random value with range [1.5,2.0] used in Crowding, mutation, and e-dominance PSO
(CMDPSO), and the range [1.75,2.0] used for an improved binary particle swarm optimization
(IBPSO) [38], [39]. The value of ¢ 1.4495 is recommended from Internet protocol PSO (IPPSO),
PSO with initialization pbest and gbest (PSOIniPG), non-dominating sorting PSO (NSPSOFS),
and PSO Mutual Information (PSOMI) & PSO entropy (PSOE) [12], [28], [35], [36], [37], [40],
[41]. It is important to note that the standard VLPSO also employs a static ¢ value of 1.4495,
serving as the standard reference for comparison. These are incorporated to test whether adaptive
adjustments to w and ¢ can improve VLPSO’s balance between global exploration and local
exploitation. The outcomes will be validated through K-fold cross-validation and tested with
classifiers such as KNN, Decision Trees, and Naive Bayes to evaluate the generalization and
reliability of the performance on training and testing data. This investigation aims to demonstrate
whether an adaptive w configuration contributes to enhanced performance in terms of reduced
variance and improved reliability of classification results for VLPSO in early leukemia diagnosis.

3. Results and Discussion

The study aims to identify patterns of the parameter w to ¢ determine which performs better
compared to the standard VLPSO, which uses a time-varying type of w static c = 1.49445. A
comparative analysis was conducted using boxplots and heatmaps to visualize and assess the
stability, consistency, and generalization performance of each method.

3.1 Quantitative Evaluation of Generalization Performance

Table 1 below displays the training and testing accuracy values for the configurations of
Adaptivel, Adaptive2, Time-varying, and Static for various values of static c. It also provides the
difference between train and test accuracy (Train-Test) for each combination, which indicates the
generalization performance of each method. A more minor Train-Test difference indicates better
generalization. The count of the best Train-Test is at the bottom of the comparison table,
indicating the number of times each method achieved the lowest Train-Test difference across the
¢ values.
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Table 1. Data training and testing differences in accuracy for KNN classification

c Adaptive 1 Adaptive 2 Time Varying Static
Train Test Train-Test Train Test Train-Test Train Test Train-Test Train Test Train-Test
1 98.32 95.00 3.32 98.59 94.27 432 98.87 95.00 3.87 98.53 96.25 2.28
1.2 98.31 95.83 2.48 98.47 95.16 3.32 98.55 92.75 5.80 98.09 93.75 4.34
1.4 98.90 93.33 5.56 98.54 94.87 3.67 98.55 92.75 5.80 98.76 93.75 5.01
1.4495 98.99 93.75 5.24 98.53 94.85 3.69 99.22 95.00 4.22 99.11 96.25 2.86
1.6 98.66 94.58 4.07 98.49 94.93 3.56 98.43 93.58 4.84 98.64 96.25 2.39
1.8 98.54 94.58 3.96 98.29 94.65 3.64 98.21 92.08 6.13 98.09 93.75 4.34
2 99.12 95.00 4.12 98.57 94.85 3.72 98.24 92.13 6.11 99.56 95.25 4.31
Count of the best Train-Test 1 3 0 3

Based on Table 1 above, for KNN classification, Adaptivel, Static, and Adaptive2
demonstrate the best balance between generalization and consistency. Static achieves the smallest
Train-Test Difference at ¢ = 1, and Adaptive2, maintaining stable performance across multiple ¢
values. This indicates that these two models are more reliable for achieving consistent
generalization across various parameter settings. Adaptivel, while showing strong generalization
at one optimal point, ¢ = 1.2 lacks consistency in its performance across the board. On the other
hand, time-varying exhibits poor generalization capabilities, with larger Train-Test differences at
all ¢ values, suggesting that this model may not be suitable for tasks requiring strong
generalization. Additionally, when examining the best Train-Test values, Adaptive2 and Static
achieve the lowest difference in all three cases, reinforcing their reliability and consistent
performance. Overall, for applications where consistency and robustness are crucial in KNN
classification, Static and Adaptive2 appear to be the better choices among the options analyzed.

Table 2. Data training and testing differences in accuracy for the Decision Tree classification

Adaptive 1 Adaptive 2 Time Varying Static

¢ Train Test Train-Test Train Test Train-Test Train Test Train-Test Train Test Train-Test
1 98.61 90.33 8.28 98.62 85.55 13.07 97.96 85.58 12.38 98.86 83.50 15.36
1.2 97.95 83.83 14.12 98.69 85.81 12.88 98.43 84.33 14.10 98.53 87.08 11.44
1.4 98.63 85.33 13.30 98.75 84.42 1433 98.43 84.33 14.10 99.22 84.83 14.39
1.4495 98.53 89.08 9.45 98.63 85.65 12.98 98.51 85.83 12.67 98.62 85.17 13.45
1.6 98.30 89.08 9.22 98.65 84.77 13.89 98.44 90.92 7.52 98.87 83.33 15.54
1.8 98.43 88.83 9.60 98.63 84.93 13.70 98.40 86.83 11.57 98.53 87.08 11.44
2 98.53 86.83 11.70 98.75 84.40 14.34 98.42 86.68 11.74 98.63 84.58 14.05
Count of the best Train-Test 5 1 1

Based on Table 2 above for Decision tree classification, Adaptivel configuration
demonstrates the best generalization performance, achieving the lowest Train-Test Differences in
5 out of 6 cases and dominating as the most robust model across different parameter settings, with
its most minor difference at ¢ = 1 (i.e., Train-Test = 8.28), indicating strong and consistent
generalization. Adaptive 2 shows moderate generalization, with its best difference at c = 1.6 (i.e.,
Train-Test =7.52) but is less consistent. It achieves only one best Train-Test count: Time-Varying
shows limited performance, with only one competitive result at c = 1.8 (i.e., Train-Test = 7.52).
In contrast, Static consistently shows a larger Train-Test Difference, with its best at c = 1.2 (i.e.,
Train-Test = 11.44). Adaptivel is the preferred model for tasks needing reliable generalization
and consistency for decision tree classification.

Table 3. Data training and testing differences in accuracy for Naive Bayes classification

Adaptive 1 Adaptive 2 Time Varying Static
¢ Train Test Train-Test Train Test Train-Test Train Test Train-Test Train Test Train-Test
1 99.11 96.25 2.86 99.56 95.03 4.52 100.00 95.25 4.75 99.44 95.25 4.19
1.2 99.66 96.50 3.16 99.53 95.30 4.23 100.00 96.25 3.75 99.77 96.50 3.27
1.4 99.55 94.00 5.55 99.57 95.25 4.32 100.00 96.25 3.75 99.31 95.00 4.31
1.4495 99.44 94.00 5.44 99.60 95.22 4.38 99.56 95.25 4.31 99.57 95.25 4.32
1.6 99.32 93.58 5.73 99.53 95.19 4.35 99.56 95.25 4.31 99.77 95.25 4.52
1.8 99.19 95.25 3.94 99.46 95.28 4.17 99.55 95.25 4.30 99.77 96.50 3.27
2 99.10 95.00 4.10 99.58 95.23 4.35 99.52 95.21 4.31 99.77 94.00 5.77
Count of the best Train-Test 4 3 0
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Based on Table 3, Adaptivel shows the strongest generalization capability, achieving the
lowest Train-Test Differences in 4 out of 6 cases, with its best difference at c = 1 (i.e., Train-Test
= 2.86). This indicates that Adaptivel is consistent and reliable for classification tasks requiring
strong generalization. Adaptive 2 also performs well but is less consistent, with its best Train-
Test Difference at c = 1.8 (i.e., Train-Test = 4.17) and achieving the best results in 3 cases. Time-
varying shows moderate performance with the three best Train-Test counts, indicating it can
generalize effectively under certain conditions, with its best result at ¢ = 1.4 (i.e., Train-Test =
3.75). Static has only one count of the best Train-Test Difference at c=1.2 (i.e., Train-Test = 3.27),
suggesting that it is less reliable overall. For this Naive Bayes Classification, the count of the best
Train-Test highlights Adaptive 1's consistency, making it the most robust model, while Static lags
in comparison.

3.2 Statistical and Variability Analysis Using Boxplots

Regarding the Quartile Range, median, mode, and average of the difference between train
and test accuracy in the boxplot based on Figure 4, the comparison of the KNN, Decision Tree,
and Naive Bayes classifiers reveals distinct patterns in the performance of each method. These
patterns provide insights into the variability and consistency of each method's generalization
across different classifiers.

Distribution of Train-Test Accuracy Difference by Method Distribution of Train-Test Accuracy Difference by Method Distribution of Train-Test Accuracy Difference by Method

eV aptive 2 Time
ethod ethod Method

KNN Decision tree Naive bayes
Figure 4. Boxplot comparison of all classifiers

Adaptivel frequently shows the lowest median Train-Test accuracy differences in the
boxplots, highlighting its potential to deliver better generalization performance under certain
conditions. This indicates that Adaptivel can effectively minimize both overfitting and
underfitting, which is valuable for achieving optimal outcomes in specific applications. However,
the wider interquartile range (IQR) and greater variability compared to the other methods suggest
that Adaptivel may not provide consistent reliability across all scenarios. In comparison,
Adaptive2 demonstrates a more stable and narrower IQR with fewer outliers, indicating consistent
performance, although its median Train-Test difference is often slightly higher than that of
Adaptivel. Time-varying shows moderate performance with variability and occasional outliers,
suggesting inconsistent generalization. In contrast, Static generally has the widest IQR and more
outliers, indicating high variability and less dependable results. Overall, while Adaptivel is strong
for achieving the lowest differences when optimal conditions are met, Adaptive 2 stands out for
its stability, making it preferable when consistent generalization is needed. Time-varying and
Static exhibit more variability, making them less ideal for reliable performance.

3.3 Visualization of Generalization Trends Using Heatmaps

The heatmap analysis provides a comprehensive visualization of Train-Test accuracy
differences for each method across various classifiers and ¢ values. By examining these heatmaps,
it becomes easier to identify patterns in generalization performance and pinpoint the conditions
under which each method performs optimally. This section delves into the comparative
configuration performance of Adaptivel, Adaptive2, Time-varying, and Static methods across the
KNN, Decision Tree, and Naive Bayes classifiers.
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Figure 5. Heatmap comparison of all classifiers

Based on the heatmaps in Figure 5 for KNN, Decision Tree, and Naive Bayes, Adaptivel
generally shows the lowest Train-Test accuracy differences, for specific ¢ values like ¢ = 1.2 in
KNN and ¢ = 1 in Naive Bayes, it indicates strong generalization under particular conditions.

3.1 Discussion

This finding aligns with [42], and [43], which showed that adaptive tuning methods can optimize
classifier generalization by dynamically adjusting parameter sensitivity. Adaptive2 displays
consistent moderate performance across all classifiers without major peaks or troughs, suggesting
stable generalization but not consistently the best results, which is consistent with the stable
convergence behavior reported in[44]. Meanwhile, time-varying strategies exhibit varied
performance with occasional low accuracy differences, but also higher variability, echoing the
instability noted in [45] for non-adaptive control strategies. Static methods perform less reliably
overall, supporting prior findings that fixed parameters often fail to accommodate dataset-specific
dynamics. Overall, Adaptivel appears most effective in achieving low Train-Test differences
when optimal ¢ values are met; Adaptive2 is preferable for consistent and reliable generalization
across different scenarios.

5. Conclusions

This study uses tables, boxplots, and heatmaps to compare the generalization, consistency,
and variability of different VLPSO parameter settings for leukemia classification. The adaptive
1-parameter setting achieves the lowest Train-Test differences, especially with Decision Tree and
Naive Bayes, indicating strong generalization. However, its wider IQR shows higher variability.
In contrast, the Adaptive2-parameter configuration demonstrates better consistency, with a
narrower IQR and more stable performance across various settings. Time-varying methods show
moderate, less consistent outcomes, while static methods perform the worst. These findings
suggest that adaptive tuning for VLPSO parameters (w and c) enhances both generalization and
stability. Such improvements are valuable for designing robust and accurate medical classification
systems, especially in bioinformatics and clinical decision support tools.

The heat maps further emphasize that the Adaptivel parameter setting is effective under
specific conditions and achieves the lowest Train-Test differences. At the same time, the
Adaptive?2 is reliable for maintaining stability across different scenarios. These findings suggest
that adaptive parameter settings, such as those used in Adaptive 1, are beneficial for optimizing
VLPSO, as they improve performance and generalization under varying conditions. It is
recommended to use adaptive parameter tuning for w and ¢ VLPSO to achieve better overall
consistency and generalization, balancing flexibility and stability in optimization tasks.
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