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Abstract: Accurate extraction of Population, Intervention, Comparison, and Outcome (PICO) elements
from clinical texts is essential for advancing evidence-based medicine, particularly in cardiology, where
clinical narratives are highly complex and heterogeneous. This study evaluates the comparative
effectiveness of three contextual embedding models—BioBERT, PubMedBERT, and SciBERT—
combined with a Bidirectional Long Short-Term Memory (BiLSTM) architecture for multi-label PICO
classification on a heart disease dataset. Model performance was assessed using accuracy, precision,
recall, and FI-score metrics, supported by confusion matrix analysis. The BioBERT-BiLSTM model
achieved an accuracy of 69.4% and an Fl-score of 75.6%, providing balanced performance across
categories. PubMedBERT-BiLSTM attained the highest accuracy and precision (73.2% and 84.1%,
respectively), while SciBERT-BiLSTM demonstrated superior recall (74.6%) and the highest overall
Fl-score (78.4%). These findings indicate that pretraining domain significantly affects classification
outcomes, with PubMedBERT and BioBERT yielding higher precision and stability, whereas SciBERT
enhances sensitivity.
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1. Introduction

Heart disease remains one of the most critical global public health challenges, accounting for more
than 17 million deaths annually and representing the leading cause of mortality worldwide [1]. Beyond its
contribution to global mortality, heart disease imposes substantial burdens in terms of disability-adjusted
life years (DALYSs), reduced productivity, and escalating healthcare costs, particularly in low- and middle-
income countries where access to timely medical intervention is often limited [2][3][4]. The clinical
spectrum of heart disease includes coronary artery disease, heart failure, valvular disorders, and
arrhythmias, each requiring complex and often lifelong management strategies [5][6][7]. Over the past two
decades, advances in pharmacological and interventional therapies have significantly reshaped clinical
management paradigms [8] [9]. Antiplatelet and lipid-lowering agents, guideline-directed medical therapy
for heart failure, and invasive procedures such as percutaneous coronary intervention have substantially
improved both patient survival and quality of life [10] [11].

Within the paradigm of Evidence-Based Medicine (EBM), the PICO model, comprising Population,
Intervention, Comparison, and Outcome, has been widely adopted as a structured approach for formulating
clinical questions and evaluating research evidence [12]. By clearly defining these components, the PICO
framework facilitates systematic literature retrieval and enhances the reliability of evidence appraisal.
Several systematic reviews confirm that applying the PICO structure improves both the precision of
literature searches and the accuracy of evidence synthesis [13] [14][15].
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However, despite its conceptual clarity, the application of the PICO framework to cardiology literature
presents domain-specific challenges_[16]. Many studies in this field employ complex trial designs with
multiple intervention arms [17][18][19], involve patients with layered comorbidities [20][21], and use
highly varied terminologies [22][23] to describe therapeutic strategies. These characteristics make the
automated extraction of PICO elements particularly challenging. Among these, the Intervention and
Comparison elements are notably more difficult to identify accurately compared with Population and
Outcome_[23] [24]. Given the rapid increase in cardiovascular publications, there is an urgent need for
automated systems capable of reliably and consistently extracting PICO elements.

Several computational approaches have been developed for PICO element extraction, ranging from
rule-based frameworks to machine learning techniques [25]. Such methods have the potential to
substantially reduce the manual effort involved in systematic reviews and meta-analyses, thereby improving
both the efficiency and reproducibility of evidence-based research [26]. Despite notable progress, most
prior studies have concentrated on oncology and infectious diseases, domains with abundant annotated
corpora, while applications to cardiovascular medicine remain comparatively underexplored [27]. This gap
underscores the need for methodologies tailored to the linguistic and clinical nuances of heart disease
literature [25].

Recent advances in contextual embedding models have shown considerable promise in biomedical
natural language processing (NLP). BioBERT, an extension of the BERT architecture pretrained on large-
scale biomedical corpora, has demonstrated strong performance in tasks such as named entity recognition
and relation extraction [28]. PubMedBERT, trained exclusively on PubMed abstracts, captures linguistic
patterns specific to biomedical publications and has achieved notable results across various biomedical
NLP tasks [25]. Meanwhile, SciBERT, developed on a broader corpus of multidisciplinary scientific texts,
offers wider domain coverage and supports cross-domain generalization [28]. These complementary
characteristics provide a compelling rationale for systematically evaluating these models in the context of
PICO classification [27].

This study aims to address this gap by systematically evaluating the performance of BioBERT,
PubMedBERT, and SciBERT, each integrated with a Bidirectional Long Short-Term Memory (BiLSTM)
architecture, for multi-label PICO classification in cardiology literature. Particular attention is given to the
Intervention and Comparison components, which have been identified as especially difficult to classify
accurately across biomedical domains [29]. By comparing models with differing pretraining domains, this
research investigates how domain-specific representations affect classification performance and explores
limitations that hinder the development of robust evidence-based systems in cardiology [30].

This study investigates the performance of three contextual embedding models, BioBERT,
PubMedBERT, and SciBERT, when integrated with a Bidirectional Long Short-Term Memory (BiLSTM)
architecture for multi-label PICO classification in cardiology-related texts. The analysis focuses on
achieving an optimal balance between precision and recall, with particular emphasis on the
Intervention/Comparison element, which exhibits substantial linguistic variability and frequent
misclassification. By comparing models pretrained on distinct corpora, this study elucidates how domain
specialization shapes linguistic generalization and classification sensitivity within biomedical text mining.

The contribution of this work is twofold. First, it presents a domain-aware comparative analysis
conducted under a unified experimental framework, thereby isolating the effects of pretraining domain on
model performance. Second, it provides a detailed examination of the Intervention/Comparison
classification bottleneck, moving beyond aggregate performance scores to deliver a fine-grained
interpretation of model behavior. The experimental setup and dataset are described transparently to ensure
replicability and future extension. Collectively, the findings offer valuable insights for the design of
automated evidence-synthesis systems and clinical decision-support tools that rely on precise PICO element
identification.

2. Research Method

This study employed an experimental research design to evaluate the effectiveness of three contextual
embedding models BioBERT, PubMedBERT, and SciBERT in combination with a Bidirectional Long
Short-Term Memory (BiLSTM) architecture for multi-label classification of PICO elements. The
evaluation utilized the PICO-HD dataset, which comprises annotated clinical texts related to heart disease.
The primary objective was to investigate how variations in the pretraining domains of contextual
embeddings influence classification performance and to identify the most effective embedding—architecture
combination for processing cardiology-related literature.

The overall research methodology is illustrated in Figure 1, which delineates the key stages of the
workflow: dataset preparation, preprocessing, embedding representation, model architecture, training, and
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evaluation. This design ensures a systematic comparison between domain-specific and domain-general
contextual embeddings within the framework of clinical natural language processing (NLP).

—>»  DataTraining  (» BiLSTM Model

Dataset

(PICO-HD Heart Disease)

Data Testing

Text Preprocessing Evaluation
¢ (Precision, Recall, F1, AUROC, PR-AUC)

Text Representation —
(BioBERT, PubMedBERT, SciBERT) Result Analysis
(Intervention/Comparison bottleneck)

Figure 1. Research Methodology

Figure 1. Research Methodology Research methodology illustrating the experimental workflow for
multi-label PICO classification. The process comprises dataset preparation (PICO-HD Heart Disease), text
preprocessing, contextual embedding using BioBERT, PubMedBERT, and SciBERT, model training and
testing using a BILSTM architecture, and evaluation based on precision, recall, F1-score, AUROC, and PR-
AUC metrics. The final stage involves result analysis focusing on the Intervention/Comparison bottleneck.

2.1. Dataset

The dataset used in this study was obtained from a publicly available Kaggle repository titled P/ICO
Medical Literatures on Heart Disease Data [31]. It consists of 2,697 annotated sentences, each labeled
according to the PICO framework. The distribution across categories is as follows: Population/Problem
(23.6%), Intervention/Comparison (28.2%), Outcome (24.2%), and Not Relevant (24.0%). This balanced
distribution ensures that each PICO element is adequately represented while reflecting the inherent
complexity of clinical narratives.

Each sentence was annotated based on the four core PICO elements. Population/Problem (P) refers
to the group of patients or the medical condition under investigation. Intervention/Comparison (I/C)
encompasses the treatments, procedures, or conditions being compared. Outcome (O) denotes the clinical
results or endpoints measured, while Not Relevant (N) represents sentences that do not contribute to
evidence extraction. An illustrative example of the dataset is provided in Table 1.

Table 1. Example of heart disease clinical text dataset based on the PICO framework

No Clinical Teks Label
1 methods total 107 women clinical indication... Population/Problem (P)
2 radial artery cannulation performed... Intervention and Comparison (I and C)
3 primary endpoint composite all-cause death... Outcome (O)
4  statistical significance defined p-value 0.05 Not Relevant (N)

2.2. Preprocessing

A conservative preprocessing strategy was implemented to preserve clinically relevant information.
Numerical values, decimal points, comparison operators, and percentage symbols were retained, as these
often convey critical quantitative details in medical texts. Stopword removal was not applied to the final
model inputs to maintain contextual dependencies essential for optimal performance in transformer-based
encoders.

Tokenization was performed using the WordPiece tokenizer to ensure compatibility with all
embedding models. All characters were converted to lowercase to reduce vocabulary sparsity, while
extraneous symbols and non-informative special characters were removed. These steps produced
normalized yet semantically rich textual inputs suitable for accurate multi-label PICO classification.

2.3. Contextual Embedding
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Following preprocessing, the clinical texts were transformed into dense vector representations using
three contextual embedding models: BioBERT, PubMedBERT, and SciBERT. BioBERT was pretrained
on large-scale biomedical corpora, including PubMed abstracts and PMC full-text articles, enabling
comprehensive coverage of biomedical terminology. PubMedBERT, by contrast, was trained exclusively
on PubMed abstracts, resulting in embeddings that capture the linguistic characteristics of biomedical
literature with high specificity. SciBERT, in turn, was pretrained on a diverse, multi-domain corpus from
Semantic Scholar, providing broader scientific coverage across multiple disciplines rather than focusing
solely on medicine.

The use of these three embedding models facilitated a controlled comparison between domain-
specialized (BioBERT and PubMedBERT) and domain-general (SciBERT) representations within the
context of PICO classification. Contextual embeddings were selected for their ability to capture nuanced
semantic and syntactic relationships in biomedical texts, outperforming conventional vectorization
techniques such as TF-IDF and word2vec. By leveraging transformer-based encoders, these embeddings
offer enhanced interpretability of the linguistic complexity and variability characteristic of clinical
narratives.

2.4. Model Architecture

The contextual embeddings derived from BioBERT, PubMedBERT, and SciBERT served as the input
representations for the classification framework. Each tokenized sentence was converted into dense vectors
using the respective embedding model. To maintain computational efficiency and mitigate overfitting given
the relatively modest dataset size, the encoder parameters were frozen during training.

The resulting sequence of embeddings was passed through a Bidirectional Long Short-Term Memory
(BiLSTM) layer with a hidden dimension of 256 units. This architecture captures contextual dependencies
in both forward and backward directions an essential feature for understanding the intricate syntactic and
semantic patterns prevalent in clinical texts.

The concatenated outputs of the forward and backward LSTM states were regularized using a dropout
rate of 0.3 and subsequently passed through a fully connected dense layer to generate the final feature
representations for classification. A sigmoid activation function was applied at the output layer to enable
independent probability estimation for each label. This design was critical for the multi-label setting, where
sentences could correspond simultaneously to one or more PICO categories (Population/Problem,
Intervention/Comparison, Outcome, or Not Relevant). Unlike the softmax function, which enforces a
single-label constraint, the sigmoid activation allowed for overlapping label assignments, thereby better
reflecting the inherent ambiguity and overlap in clinical texts.

2.5. Data Split and Training

The dataset was partitioned into training (80%) and testing (20%) subsets using a stratified split to
preserve the proportional distribution of labels. From the training subset, 10% was further separated as a
validation set for hyperparameter optimization and early stopping. Model optimization was carried out
using the Adam optimizer with binary cross-entropy loss. The training configuration included a batch size
of 16, hidden layer dimension of 256 units, dropout rate of 0.3, and a learning rate of 1x10~*. Each model
was trained for three epochs, with early stopping based on validation loss to prevent overfitting. All
experiments were conducted on a single NVIDIA Tesla T4 GPU, with an average runtime of approximately
two to three minutes per epoch. A concise algorithmic summary of the experimental workflow is provided
in Algorithm 1 to facilitate reproducibility.

INPUT:
Clinical sentences annotated with PICO labels

OUTPUT:
Predicted labels and evaluation metrics
STEPS:
Initialize random seed
Split data into training, validation, and testing sets
For each model in {BioBERT, PubMedBERT, SciBERT}:
Load pretrained model and tokenizer
Freeze encoder weights
Build architecture: Input — Embeddings — BiLSTM — Dropout — Output layer
Train using Adam optimizer, binary cross-entropy loss, batch size 16, and early stopping
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Evaluate on the test set and record metrics

Compare all models and analyze error patterns

Return the best-performing model and final evaluation results
2.6. Evaluation Metrics

The performance of each embedding model combined with the BILSTM classifier was evaluated using
five key metrics: Accuracy, Precision, Recall, F1-score, and Hamming Loss. Accuracy served as an overall
indicator of classification performance, whereas macro-averaged Precision, Recall, and F1-score were used
to assess the balance between false positives and false negatives across all PICO categories. Hamming
Loss quantified the proportion of misclassified labels in the multi-label setting, providing a robust measure
of prediction stability. To complement these aggregate indicators, confusion matrices were constructed for
each label to provide a detailed analysis of error distribution. Additionally, statistical significance testing
employing bootstrap-based confidence intervals and paired comparisons was conducted to ensure that
performance differences among models were not attributable to random variation. Receiver Operating
Characteristic (ROC) and Precision—Recall (PR) curves were generated to visualize the models’
discriminative behaviors.

All experiments were performed under identical computational conditions to ensure reproducibility
and fairness across comparisons. The complete configuration of training parameters, data partitioning, and
evaluation metrics is thoroughly reported to facilitate the replication of results. By maintaining fixed
random seeds and consistent preprocessing procedures, this study guarantees that the outcomes can be
independently verified and reproduced under comparable computational environments.

3. Results and Discussion

This section presents the experimental findings along with an integrated discussion of model
performance. The analysis encompasses both quantitative and qualitative perspectives. Quantitative
evaluation relies on standard multi-label classification metrics, including accuracy, macro-averaged
precision, recall, F1-score, and Hamming loss. Complementary analyses, such as confusion matrices, ROC
curves, and PR curves, are provided to illustrate classification tendencies and error patterns. Furthermore,
bootstrap-based statistical testing was applied to confirm the robustness of the observed performance
differences.

Particular attention is devoted to the Intervention and Comparison categories, which consistently
emerged as the most challenging to classify due to linguistic variability, overlapping terminology, and
context-dependent phrasing. The results are first presented at the individual model level, highlighting each
model’s distinct strengths and weaknesses, followed by a comparative analysis evaluating the relative
advantages of BioBERT, PubMedBERT, and SciBERT when integrated with the BILSTM architecture.

3.1. Result

This subsection reports the experimental outcomes based on the five primary evaluation metrics:
Accuracy, Precision, Recall, F1-score, and Hamming Loss. Confusion matrices are also presented to
provide a granular view of each model’s classification performance across PICO labels.

3.1.1. BioBERT-BiLSTM

The BioBERT-BiLSTM model was evaluated on the PICO-HD dataset. Results show that
BioBERT achieved an accuracy of 69.4%, with an average F1-score of 75.6%, precision of 80.6%, recall
of 72.1%, and a Hamming loss of 0.117. The relatively low Hamming loss indicates stable multi-label
predictions. BioBERT demonstrated balanced performance in the Outcome and Not Relevant categories,
with minimal false negatives. However, its performance was less consistent for Population/Problem and
particularly weak for Intervention/Comparison, yielding 67 false negatives. This pattern suggests that while
BioBERT’s broader contextual representation enabled strong recall, it also resulted in increased false
positives.

Table 2. Evaluation Results of the BioBERT-BiLSTM Model

Metric Value
Accuracy 0.694
Precision 0.806
Recall 0.721
F1-Score 0.756
Hamming Loss 0.117
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Table 3. Confusion Matrix per Label (BioBERT-BiLSTM)

Label True False False True
Negative  Positive Negative  Positive
Population/Problem (P) 379 28 40 91
Intervention/Comparison (I/C) 331 29 67 111
Outcome (O) 388 36 24 90
Not Relevant (N) 394 25 26 94

The results in Table 2 confirm that BioBERT-BiLSTM achieved a balanced trade-off between
precision and recall, with a moderate accuracy of 69.4%. Table 3 further reveals that the Outcome and Not
Relevant categories were classified most accurately, as indicated by the low false negative counts (24 and
26, respectively). Conversely, the Intervention/Comparison category remained the most challenging,
followed by Population/Problem. These findings indicate that while BioBERT effectively captures general
biomedical semantics, it struggles to accommodate the linguistic diversity typical of intervention-related
expressions.

3.1.2. PubMedBERT-BiLSTM

The PubMedBERT-BIiLSTM model was evaluated under the same conditions. It achieved an
accuracy of 73.2%, an Fl-score of 77.7%, precision of 84.1%, recall of 73.8%, and a Hamming loss of
0.109. Compared to BioBERT-BiLSTM, PubMedBERT exhibited higher precision but lower recall,
suggesting a reduction in false positives at the cost of slightly more false negatives, particularly in the
Intervention/Comparison category. Stronger performance was again observed for the Outcome and Not
Relevant categories.

Table 4. Evaluation Results of the PubMedBERT-BiLSTM Model

Metric Value
Accuracy 0.732
Precision 0.841
Recall 0.738
F1-Score 0.777

Hamming Loss  0.109

Table 5. Confusion Matrix per Label (PubMedBERT-BiLSTM)

Label True False False True
Negative Positive  Negative Positive

Population/Problem (P) 381 26 38 93

Intervention/Comparison (I/C) 336 24 61 117

Outcome (O) 385 33 22 98

Not Relevant (N) 401 18 23 97

As shown in Table 4, PubMedBERT-BiLSTM achieved the highest overall accuracy (73.2%) and
precision (84.1%) among the evaluated models. However, its recall was slightly lower than BioBERT’s,
reflecting a tendency to overlook some positive instances. Table 5 further indicates that PubMedBERT
performed most effectively on the Outcome and Not Relevant categories, which exhibited the lowest false
negative rates (22 and 23, respectively). Conversely, the Intervention/Comparison label remained
challenging, yielding 61 false negatives. These results suggest that pretraining on PubMed abstracts
enhanced PubMedBERT’s precision and domain relevance, yet limited its sensitivity to the lexical and
syntactic diversity characteristic of intervention-related expressions in clinical cardiology texts.

3.1.3.  SciBERT-BiLSTM

The SciBERT-BIiLSTM model produced moderate results in the multi-label classification of PICO
elements within heart disease clinical texts. The model achieved an overall accuracy of 72.8%, an F1-score
of 78.4%, precision of 82.7%, recall of 74.6%, and a Hamming loss of 0.104. These results indicate that
although SciBERT was pretrained on a broad corpus of scientific literature rather than biomedical-specific
data, it provided a reasonably competitive baseline compared to domain-focused models such as BioBERT
and PubMedBERT. The evaluation metrics are summarized in Table 6.

Table 6. Evaluation Results of the SciBERT-BiLSTM Model
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Metric Value
Accuracy 0.728
Precision 0.827
Recall 0.746
F1-Score 0.784

Hamming Loss  0.104

A more granular view is provided by the confusion matrices presented in Table 7.

Table 7. Confusion Matrix per Label

Label True Negative False False True
Positive  Negative Positive

Population/Problem (P) 393 16 41 90

Intervention/Comparison (I/C) 336 33 48 123

Outcome (O) 398 24 30 88

Not Relevant (N) 407 13 20 100

From the confusion matrix, it can be observed that SCiIBERT-BiLSTM achieved a slightly stronger
balance between precision and recall compared to PubMedBERT-BiLSTM, though its overall recall
remained lower than that of BioBERT—BiLSTM. The Intervention/Comparison category again emerged as
the most difficult to identify, with 48 false negatives and 33 false positives, underscoring the model’s
challenges in capturing the diverse linguistic patterns associated with intervention-related terminology. In
contrast, the Not Relevant and Population/Problem categories demonstrated greater stability, reflected by
relatively few classification errors.

Overall, the findings suggest that while SciIBERT-BIiLSTM delivers consistent performance across
most categories, it also reveals the limitations of general-purpose scientific embeddings when applied to
highly specialized biomedical tasks. Despite achieving competitive precision and stability, the model’s
underperformance in the Intervention/Comparison category reinforces the importance of domain-specific
pretraining for accurate clinical text understanding. Future work may explore hybrid strategies that integrate
SciBERT’s broad scientific knowledge with biomedical-specialized embeddings to enhance performance
in complex comparative contexts.

In addition to the tabulated metrics, a visual comparison of model performance across Accuracy,
Precision, Recall, and F1-score is presented in Figure 2. The bar chart illustrates the relative strengths of
each embedding model, providing a clear depiction of performance variations.

10

=== BioBERT
W= PubMedBERT
== SCiBERT

0.8

0.6

Score

0.4

0.2

0.0

Accuracy Precision Recall F1

Figure 2. Performance comparison of BioBERT, PubMedBERT, and SciBERT models

Figure 2. Comparative Performance of BioBERT-BiLSTM, PubMedBERT-BiLSTM, and
SciBERT-BILSTM Models Comparative performance across four evaluation metrics—accuracy,
precision, recall, and F1-score. PubMedBERT achieved the highest precision and overall accuracy, while
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SciBERT exhibited relatively stronger recall, indicating broader sensitivity to PICO elements in heart
disease clinical texts.

3.1.4. ROC and Precision—Recall Curves

Figures 3 and 4 display the Receiver Operating Characteristic (ROC) and Precision—Recall (PR)
curves for the three models across the four PICO labels. Both the Outcome and Not Relevant categories
achieved AUC values exceeding 0.90, whereas Intervention/Comparison remained the most difficult to
classify accurately. Among the models, PubMedBERT demonstrated the best performance on the Outcome
label, while SciBERT showed stronger recall trends. These visualizations collectively confirm that domain-
specific embeddings such as PubMedBERT and BioBERT enhance model stability and precision, whereas
SciBERT’s generalized pretraining results in broader recall at the expense of higher false positive rates.

ROC Curves - BioBERT ROC Curves - PubMedBERT

— P(AUC=0.92)

IC (AUC=0.90)
—— 0 (AUC=0.93)
— N (AUC=0.98) 0.0

— P (AUC=0.93)
—— IC (AUC=0.92)

—— 0(AUC=0.93)
—— N (AUC=0.98)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

(a) ROC Curves - SCiBERT (b)

0.0 02 0.4 06 0.8 1.0
False Positive Rate

— P(AUC=0.91)

IC (AUC=0.89)
—— 0 (AUC=0.93)
—— N (AUC=0.97)

0.8 1.0

©)
Figure 3. ROC curves for BioBERT-BiLSTM, PubMedBERT-BiLSTM, and SciBERT-BiLSTM.
(a) BioBERT-BIiLSTM. (b) PubMedBERT-BiLSTM. (c) SciBERT-BiLSTM.

Figure 3. ROC Curves for BioBERT-BiLSTM, PubMedBERT-BiLSTM, and SciBERT-BiLSTM
Models (a) BioBERT-BiLSTM (b) PubMedBERT-BiLSTM (c) SciBERT-BiLSTM Receiver
Operating Characteristic (ROC) curves illustrating classification performance for PICO element
identification. PubMedBERT achieved the largest area under the curve (AUC), indicating superior
discrimination between relevant and non-relevant sentences, while SciBERT displayed broader sensitivity
across categories.

Precision-Recall Curves - BioBERT Precision-Recall Curves - PubMedBERT

(ﬁ) Recall (b)
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Precision-Recall Curves - SCIBERT

Figure 4. Precision—Recall (PR) curves for the proposed models.
(a) BioBERT-BiLSTM. (b) PubMedBERT-BiLSTM. (¢) SciBERT-BiLSTM.

Figure 4. Precision—Recall (PR) Curves for BioBERT-BiLSTM, PubMedBERT-BiLSTM, and
SciBERT-BiLSTM Models (a) BioBERT-BiLSTM (b) PubMedBERT-BiLSTM (c) SciBERT-BILST
Precision—Recall (PR) curves showing classification behavior across PICO elements. PubMedBERT
obtained the highest precision across all categories, whereas SciBERT exhibited wider recall coverage,
demonstrating complementary strengths in handling heart disease clinical text.

3.2. Discussion
The comparative evaluation of BioBERT, PubMedBERT, and SciBERT, each integrated with the
BiLSTM architecture, underscores the critical influence of pretraining domain on the classification of PICO
elements in cardiology-related texts. A concise summary of the primary results is provided in Table §,
highlighting model-wise differences in predictive behavior, precision—recall balance, and domain
adaptability.
Table 8. Summary of model performance across evaluation metrics

Model Accuracy Precision Recall F1-Score Hamming Loss
BioBERT-BIiLSTM 0.694 0.806 0.721 0.756 0.117
PubMedBERT- 0.732 0.841 0.738 0.777 0.109
BiLSTM

SciBERT-BIiLSTM 0.728 0.827 0.746 0.784 0.104

Table 8 summarizes the comparative performance of the three models across all evaluation metrics.
PubMedBERT-BIiLSTM achieved the highest accuracy and precision, reflecting the advantage of its
exclusive pretraining on PubMed abstracts. The consistent linguistic patterns and standardized biomedical
vocabulary of PubMed contribute to a more uniform embedding space, enabling the model to recognize
domain-specific terminology with high fidelity and to reduce false-positive predictions. This focused
domain exposure enhances lexical discrimination, thereby explaining PubMedBERT’s superior precision
in identifying Population, Outcome, and Not Relevant sentences.

In contrast, SciBERT-BiLSTM attained the highest recall, a result attributable to its pretraining on
the heterogeneous Semantic Scholar corpus encompassing multiple scientific disciplines. This broader
exposure allows SciBERT to generalize more effectively, capturing a wider range of linguistic variations,
including expressions that deviate from canonical biomedical phrasing. However, this generalization
introduces a modest decline in precision, as the model occasionally misclassifies non-relevant sentences
containing generic comparative or procedural terminology. BioBERT-BiLSTM, on the other hand,
demonstrated balanced but slightly lower performance. This outcome can be attributed to its dual-domain
pretraining on PubMed abstracts and PMC full-text articles, where longer narrative structures and stylistic
variability may dilute precision while maintaining moderate recall.

Error analysis further revealed that the Intervention and Comparison category remained the most
challenging across all models, producing 67, 61, and 48 false negatives for BioBERT, PubMedBERT, and
SciBERT, respectively. These findings are consistent with prior research emphasizing the linguistic
complexity of intervention-related expressions, which often include implicit comparisons, nested
procedures, and multi-drug combinations that lack explicit comparators [16], [24], [29]. Conversely, the
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Outcome and Not Relevant categories were classified most reliably, suggesting that explicit outcome
markers (e.g., “mortality,” “reduction,” “improvement”) and non-evidential statements are easier for
contextual encoders to identify accurately.

Similar trends have been observed in broader biomedical NLP studies. Gu et al. [32] reported that
PubMedBERT outperformed BioBERT in biomedical named-entity recognition due to its tighter domain
adaptation. Beltagy et al. [33] found that SciBERT achieved higher recall across heterogeneous datasets in
clinical relation extraction tasks. Likewise, Li et al. [34] demonstrated that domain-specific embeddings
enhance precision in concept extraction but may underperform in cross-domain applications. These
converging results strengthen the conclusion that domain specialization enhances precision and stability,
whereas general-domain exposure improves recall and adaptability.

From a practical perspective, these findings carry direct implications for evidence-based automation.
The PubMedBERT-BiLSTM model is well-suited for automated evidence synthesis and systematic review
pipelines that prioritize precision and interpretability, while the SciBERT-BiLSTM model may better
support exploratory literature mining, where broader coverage and recall are desirable. The BioBERT-
BiLSTM configuration offers a balanced alternative for general biomedical classification tasks, providing
a compromise between domain specialization and generalization.

Despite these promising outcomes, all models were constrained by the modest dataset size (2,697
sentences) and the limited diversity of the PICO-HD corpus. Future research should explore hybrid or
ensemble approaches that combine the specificity of PubMedBERT with the coverage of SciBERT, or
leverage domain-adaptive fine-tuning using larger, more diverse cardiology datasets. Integrating
contextual embeddings with symbolic or rule-based layers could further enhance interpretability and
improve the identification of complex intervention phrases a recurring limitation identified in this study.

4. Conclusions

This study conducted a comprehensive comparative evaluation of BioBERT, PubMedBERT, and
SciBERT integrated with a BiLSTM architecture for multi-label classification of PICO elements in
cardiology-related texts. The findings confirmed that PubMedBERT-BiLSTM achieved the highest overall
accuracy (73.2%) and precision (84.1%), demonstrating the advantage of domain-specific pretraining on
PubMed abstracts. SciBERT-BiLSTM, while slightly lower in accuracy (72.8%), attained the best recall
(74.6%) and highest F1-score (78.4%), indicating that its broader scientific coverage improved sensitivity.
Meanwhile, BioBERT-BiLSTM achieved balanced performance, with an accuracy of 69.4% and an F1-
score of 75.6%, suggesting stable representation of biomedical terminology.

Overall, the results emphasize that the pretraining domain exerts a strong influence on model
performance. Domain-specific embeddings, such as PubMedBERT and BioBERT, are particularly
effective for achieving precision and stability, while a general scientific model like SciBERT offers
complementary strengths in recall. Consequently, model selection should be application-driven:
PubMedBERT-BIiLSTM is optimal for systems emphasizing false-positive reduction and interpretability,
whereas SciBERT-BIiLSTM is more suitable for semi-automated review systems requiring broader
sensitivity.

Despite its contributions, this research is limited by the small dataset size and the focus on only three
embedding models. Future investigations should incorporate larger and more diverse cardiology corpora,
evaluate additional biomedical embeddings such as ClinicalBERT and BlueBERT, and examine advanced
or ensemble architectures to improve robustness and generalizability.

In conclusion, this study demonstrates that the combination of contextual embedding models with a
BIiLSTM framework can effectively classify PICO elements in heart disease literature. Among the
evaluated models, PubMedBERT-BiLSTM provided the best balance of precision and interpretability,
underscoring the importance of domain-specific pretraining for reliable biomedical text mining. Practically,
the proposed framework serves as a foundation for automated evidence synthesis systems, facilitating the
structured extraction of clinically relevant information to support evidence-based guideline development.
Nonetheless, the findings highlight the need for continued research into larger datasets and hybrid or
ensemble models that integrate domain-specific and domain-general representations to enhance robustness
and generalization in clinical natural language processing.
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