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1. Introduction 

Indonesia’s marine region, particularly the Anambas Islands Regency, possesses 
substantial potential for marine biodiversity and resource development [1]. The marine ecosystem 
serves as a critical habitat for sea turtles (Cheloniidae), species that are currently threatened with 
extinction due to continuous population decline [2]. This decline can be mitigated through 
controlled hatching practices that ensure the continuity of the turtles’ life cycle [3]. The success 
of sea turtle hatcheries depends largely on the availability and sustainability of healthy marine 
ecosystems, where well-managed areas play a strategic role in conservation and ecotourism 
activities, implemented through semi-natural or intensive hatching approaches [4]. Effective 
conservation of sea turtles requires intensive, collaborative monitoring efforts among various 
stakeholders, including local communities, conservation institutions, and government agencies 
[5]. 

Mangkai Island, located within the Anambas Islands Marine Conservation Area, represents 
one of the primary nesting sites for sea turtles [6]. Geographically situated at 03°05'32" N and 
105°35'00" E and covering approximately 2.27 km², this island is recognized as an ecologically 
vital zone. Monitoring data collected by LKKPN Pekanbaru from 2022 to 2024 reveal a consistent 
seasonal nesting pattern, with peak activity occurring between May and September, and the 
highest frequency recorded in June and July. The total number of nesting events was reported as 
2,641 in 2022, 2,851 in 2023, and 2,532 in 2024 [7]–[9]. These consistent temporal trends 
highlight the importance of systematic natural resource management, ensuring that ecological 
benefits can be sustainably enjoyed by local communities while maintaining biodiversity integrity 
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[2]. Species-based conservation management, particularly for sea turtles, aims not only to enhance 
conservation success but also to improve community livelihoods through sustainable utilization 
[10]. Furthermore, species conservation offers opportunities for ecotourism development, which 
can generate alternative income for local communities under conservation-based programs [9]. 

Promotional activities carried out by LKKPN Pekanbaru have demonstrated an increasing 
trend in tourist arrivals, with 76 visitors in 2022, 122 in 2023, and 269 in 2024. The majority of 
visits coincide with the sea turtle nesting season from April to November. Data on tourist activities 
within the Anambas Islands and the National Marine Conservation Area show that 43.5% of 
visitors engaged in snorkeling, 24.6% in diving, 3.6% in turtle watching, 2.2% in fishing, 0.7% 
in survival training, and 25.4% in other recreational activities [11]. The low proportion of turtle-
watching tourists, despite the area’s ecological potential, underscores the need for enhanced 
conservation-based ecotourism education and data-driven planning by conservation managers. 
However, a key limitation remains: no reliable predictive system currently exists to accurately 
estimate the hatching success rate of sea turtle eggs, which is essential for both conservation 
decision-making and ecotourism management. As a result, conservation practices remain largely 
reactive, relying on field observations that are often time-consuming, costly, and prone to 
environmental variability. 

To address this challenge, this study proposes the use of Long Short-Term Memory 
(LSTM) networks to predict the hatching success rate of sea turtle eggs. The research framework 
is built upon marine ecological theory, temporal data modeling, and information technology-
based systems. LSTM, a subclass of Recurrent Neural Networks (RNNs)[12]. Is specifically 
designed to recognize and learn sequential dependencies in time-series data [13]. Since sea turtle 
nesting and hatching cycles exhibit strong seasonal and temporal regularities [14], LSTM 
provides an appropriate computational model for predicting these ecological phenomena. Its 
capacity to capture nonlinear and long-term dependencies makes it a promising tool for ecological 
forecasting and conservation management. The objective of this study is to develop a robust and 
interpretable prediction model for sea turtle hatching success based on ecological and temporal 
variables. The proposed model aims to assist conservation managers in designing strategic turtle-
watching ecotourism programs, providing accurate information to visitors, and contributing to 
non-tax state revenue (PNBP) through sustainable marine-based ecotourism initiatives. 
Although the application of machine learning in ecological prediction has been increasingly 
explored, studies specifically addressing sea turtle hatching success remain scarce. Prior research 
employing Multiple Linear Regression (MLR) and Decision Tree (DT) algorithms achieved Root 
Mean Square Error (RMSE) values of 3.96 (training) and 4.95 (testing) for MLR, and 4.29 
(training) and 4.82 (testing) for DT. Despite acceptable accuracy, these models failed to 
incorporate temporal intervals between nesting and hatching events [6]. Conversely, conventional 
LSTM models have achieved up to 97.13% accuracy in smart grid forecasting tasks [15]. 
Demonstrating their superiority in handling large-scale, long-term time-series data for predictive 
planning in energy systems [16]. Empirical comparisons also show that LSTM consistently 
outperforms ARIMA models in capturing nonlinear, long-term, and seasonal dependencies [17]. 
Although Transformer-based architectures have recently gained attention, they generally require 
larger datasets and greater computational resources, making them less suitable for small scale 
ecological studies. Within the context of sea turtle conservation, there remains a research gap in 
integrating deep learning based approaches, particularly LSTM, with ecological variables such as 
sand temperature, humidity, incubation duration, and nesting seasonality. Addressing this gap is 
crucial for developing data driven predictive models that can simultaneously account for 
environmental factors and temporal patterns[17] [18]. This study extends existing literature by 
incorporating key ecological time-series variables including nesting activity, incubation period, 
environmental conditions, and seasonal nesting trends to accurately predict hatching success rates 
even under limited data conditions. Unlike prior approaches, the proposed optimized LSTM 
model is specifically tailored for small-scale, seasonally dependent ecological datasets. Beyond 
numerical prediction, this model supports evidence-based conservation management and strategic 
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ecotourism planning. The novelty of this research is applying an LSTM approach models within 
the context of sea turtle conservation in the Anambas Islands, an area that has received limited 
scientific attention. This study not only emphasizes predictive accuracy but also demonstrates the 
practical applicability of LSTM for promoting sustainable marine resource management and 
enhancing conservation-oriented ecotourism planning. 

 
2.  Research Method 

The research was conducted using a quantitative research approach [19]. The data were 
processed through a secondary analysis approach and deep learning modelling, specifically using 
the LSTM model to predict sea turtle egg hatching. The object of the study was sea turtles, with 
the variables utilised in the research including nest code, egg-laying date, nest depth, number of 
eggs, turtle species, tidal distance, hatching date, temperature, and humidity. The research stages 
included data loading and comprehension, Exploratory Data Analysis (EDA) to observe data 
structure, patterns, and characteristics, and data splitting for testing purposes, which consisted of 
training and testing datasets with configurations of 90:10, 80:20, 70:30, and 60:40. The modelling 
phase employed the LSTM method with time steps of 2, 5, 7, 30, and 45. The model was evaluated 
using the Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the coefficient 
of determination (R²) metrics to assess how well the model predicted the outcomes [20], it can be 
seen in the flow diagram Figure 1. 
 

 
Figure 1: research workflow 

 

Figure 1 illustrates the research workflow for predicting sea turtle hatching success using 
an LSTM-based framework. The process begins with defining research objectives and collecting 
both environmental and hatchery data, including temperature, humidity, nesting dates, incubation 
periods, and hatching success rates. The preprocessing stage ensures data quality through 
normality testing to Ensures that the data distribution meets the assumptions required for 
statistical analysis, visualization, aggregation to Integrates multiple data sources into a unified 
and standardized format, and interpolation to Fills in missing values and smooths irregularities to 
maintain data continuity and completeness, aiming to produce clean and reliable data for 
prediction. Feature engineering techniques process transforms raw variables into meaningful 
features that enhance model performance. Derived features may include time-lagged values, 
temperature averages, and environmental interaction indices, and the sliding window method are 
applied to transform the data into supervised sequences suitable for LSTM temporal modeling. 
The dataset is then divided into training and testing subsets, where the training data are used to 
train the model and the testing data are used to evaluate its performance. The LSTM model is 
trained to capture short and long-term temporal dependencies within the data. Once optimal 
performance is achieved, the model is saved and evaluated using MAE, RMSE, and R² metrics to 
validate its accuracy and generalization capability. 

Choosing an appropriate model for ecological time-series prediction is essential to 
capture both short- and long-term dependencies. While traditional models like ARIMA perform 
well on linear stationary data, they struggle with the nonlinear and dynamic characteristics of 
ecological systems [10]. Deep learning models, particularly LSTM networks, have shown 
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superior performance in forecasting complex time-series data, including environmental and 
marine ecosystem applications [21] [17]. Compared to GRU and Bi-LSTM, LSTM offers a 
balanced trade-off between accuracy and computational efficiency. Although Transformer 
models provide strong predictive capability, their high computational demand limits their use in 
small-scale ecological studies. Therefore, LSTM is chosen for its robustness in modeling temporal 
dependencies from limited ecological datasets while maintaining computational efficiency 
[18][22]. 

2.1 Dataset Description 
Data were systematically collected through the identification and selection of credible 

sources. The primary dataset was obtained from the monitoring records of LKKPN Pekanbaru, 
while environmental variables, including temperature and humidity, were retrieved from the 
official BMKG open-access portal https://dataonline.bmkg.go.id/data-harian. The environmental 
records were selected for their relevance to sea turtle nesting and hatching success. Each source 
was critically evaluated to ensure data quality and research suitability in terms of completeness, 
temporal coverage, and consistency. Only datasets that met these standards were retained for 
analysis, as summarized in Table 1. 

 

Table 1. The initial research data were compiled from multiple credible sources 
Kode 
sarang1 

Tgl  
bertelur1 

Kedalaman 
sarang1 

Jumlah 
telur1 

Jenis 
Penyu1 

Pasang 
surut1 

Tgl  
menetas1 Suhu2 Kelemba 

ban2 

R1 4-Mar-22 30 150 sisik 15 25-Apr-22 26.2 88 
R1s 12-Mar-22 30 129 sisik 15 24-Apr-22 26.7 82 
R2 14-Mar-22 41 90 hijau 15 28-Apr-22 26.8 81 
... ... ... ... ... ... ... ... ... 
r39 31-May-24 37 140 sisik 22 18-Jul-24 30 80 
1044 rows × 9 columns       

1Source: Sea turtle monitoring data provided by LKKPN Pekanbaru  

2Source: Environmental data retrieved from the BMKG open-access online portal 
Each data source was critically evaluated to ensure quality, completeness, and consistency. 

Only qualified datasets were included in the analysis. After selection, all data were harmonized 
into a unified structured format to support preprocessing, exploratory analysis, and modelling. 
This integrated dataset served as the empirical basis for predictive modelling, comprising 1,044 
records with nine variables: nest code, laying date, nest depth, egg count, species, tidal range, 
hatching date, temperature, and humidity. 
2.2 Exploratory Data Analysis (EDA) 

Exploratory Data Analysis (EDA) was conducted to provide an overall visual overview of 
the dataset, as well as to examine and interpret the relationships between its variables [23]. 
Exploratory Data Analysis was selected due to its ability to present data in a visually appealing 
and easily interpretable form for the audience[24]. A comprehensive visualization of the dataset 
is provided in the following Figure 2. 

 

Figure 2a: Distribution of Turtle nesting the 
Research Dataset  

 
 
 
 
 
 
 
 
Figure 2b: Distribution of Turtle Species 
in the Research Dataset  
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Figure 2c: Distribution of Turtle Species in the Research Dataset 

Figure 2a This figure illustrates annual variations in sea turtle nesting activity from 2022 
to 2024, showing distinct temporal patterns. Nesting typically increased in March, peaked 
between May and July, and declined by October, with minimal activity in November and 
December. The peak occurred in June 2022 (106 nests), July 2023 (136 nests), and May 2024 (45 
nests), indicating fluctuations in nesting intensity and seasonality across years 

Figure 2b illustrates that the distribution of turtle species is predominantly composed of 
green turtles. This is attributable to their wider presence within the Anambas Islands and National 
Marine Protected Area. In terms of physical characteristics, green turtles are generally larger than 
hawksbill turtles [14]. Subsequently, the distribution of variables across different turtle species 
can be observed in Figure 3. 

Figure 2c presents descriptive data analysis using the describe () function, providing key 
statistical insights such as mean, standard deviation, range, and distribution. This step is essential 
for LSTM modeling, as it ensures proper normalization or standardization to stabilize gradients, 
accelerate convergence, and enhance predictive accuracy. Furthermore, this analysis aids in 
identifying the most influential variables and detecting potential outliers that may degrade model 
performance. The distribution of data variables across turtle species can be observed in Figure 4. 
 

 
Figure 3: Variable-wise distribution across turtle species 

Variable-wise visualizations across turtle species were constructed to assess inter-species 
variation Figure 3. Most variables exhibited similar distributions between green and hawksbill 
turtles, although several data points fell outside the expected ranges, suggesting the existence of 
outliers. Detecting these deviations was essential to determine whether the variations stemmed 
from ecological differences or measurement inconsistencies. Outlier detection was conducted 
using the Interquartile Range (IQR) method [25] , and the results were visualized through boxplots 
Figure 4. 
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Figure 4: Outlier detection plots for each variable 

Outlier detection plots for each variable the plots revealed that nest depth, egg count, and 
tide variables contained several outliers positioned beyond the whiskers, indicating deviations 
from normal ranges. These outliers may represent either natural ecological variation or potential 
recording errors. A detailed summary of outlier thresholds and frequencies by turtle species is 
presented in Table 2, providing a clearer understanding of species-specific variability. 

Table 2. Outlier summary variable across turtle species 

Variables Turtle 
Species 

Lower 
Bound 

Upper 
Bound 

Count Below 
Lower Bound 

Count Above 
Upper Bound 

Kedalaman sarang Hijau 18.50 102.50 1 40 
Sisik 20.00 68.00 0 3 

Jumlah telur Hijau 40.75 138.75 7 12 
Sisik 23.75 225.75 0 0 

Suhu Hijau 26.15 31.35 8 0 
Sisik 25.20 30.80 0 0 

Kelembaban Hijau 70.50 90.50 0 10 
A further temporal visualization Figure 5 was developed to explore the recurrence of 

seasonal nesting behaviors. The results confirmed consistent nesting peaks between May and 
September, reinforcing the cyclical nature of sea turtle reproduction. However, the 2024 dataset 
only covered observations up to June, thereby limiting temporal continuity and reducing the 
completeness of the time series. Recognizing this limitation is vital to ensure that time-dependent 
features are accurately modeled in the LSTM framework. 

The Exploratory Data Analysis stage provides a comprehensive understanding of temporal 
behaviors, species composition, statistical characteristics, and potential irregularities within the 
dataset. This analytical stage is conducted to ensure the validity of subsequent modeling 
processes. The visual and statistical insights obtained through EDA strengthen the methodological 
foundation of this study by ensuring that the data used are clean, well-structured, and scientifically 
robust for predicting the hatching success rate of sea turtles using the LSTM model. 

 

 
 

Figure 5: seasonal nesting patterns of sea turtles 
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2.3 Data Pre-Processing 
Data preprocessing was conducted to ensure consistency and quality before 

model development LSTM. Feature engineering involves the creation, modification, or selection 
of new variables that more effectively represent the underlying phenomena under investigation. 
This stage plays a crucial role in enhancing the model’s ability to capture complex relationships 
among variables. Using the following pseudocode df['tgl_menetas'] = pd.to_datetime 
(df['tgl_menetas']), df['tgl_bertelur'] = pd.to_datetime(df['tgl_bertelur']), and df['lama_inkubasi'] 
= (df['tgl_menetas'] - df['tgl_bertelur']).dt. days the incubation period was derived by calculating 
the difference between the hatching date and the laying date. 

A normality test was performed to assess whether the data conformed to a normal 
distribution. This procedure aimed to verify the distributional characteristics of the dataset prior 
to further statistical analysis. The Shapiro Wilk test was applied for this purpose. The results 
revealed that the target variable, incubation period, did not exhibit a normal distribution for either 
turtle species. Specifically, the p-value for hawksbill turtles was 1.6944145415499533e-21, and 
for green turtles, 8.979710046018405e-12. Both values were considerably lower than the 
significance threshold (α = 0.05), thus leading to the rejection of the null hypothesis (H₀) of 
normality [26][27] . The spread of the incubation period data for each turtle species is illustrated 
in Figure 6. 

 

 
Figure 6: Distribution plots by turtle species 

 
As the incubation period data were non-normally distributed, the Mann–Whitney U test 

was used to compare hawksbill and green turtles, yielding a p-value of 0.0000007459 (α = 0.05), 
indicating a significant difference [28]. Consequently, the species could not be combined, and 
hawksbill turtle data were excluded to allow focused aggregation on green turtles, facilitating the 
construction of a complete time series suitable for LSTM modeling. 

To prepare the dataset for LSTM modeling, it was transformed into a time series format 
using the nesting date as the index. Data for green turtles were aggregated by date to create unique 
daily records, and missing dates were inserted with zeros to indicate non-nesting days. A binary 
feature, “nesting status,” was added (1 for nesting days, 0 for non-nesting days) to enable the 
model to learn both nesting and non-nesting patterns, ensuring a complete and chronologically 
ordered time series illustrated in Figure 7. 

 

  
Data Composition Before Aggregation and Index 
Transformation 

Data Composition After Aggregation and Index 
Assignment 

  
Figure 7: Data Composition Before and After Aggregation and Index Assignment 

Data interpolation was applied to address missing values and maintain the continuity of 
the time series, ensuring no loss of essential information for model training. A complete date 
index was generated, and the sliding window method was used to create input sequences capturing 
temporal dependencies. Time steps of 2, 5, 7, 30, and 45 were tested to represent short-, medium, 
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and long-term nesting patterns, enabling the LSTM model to effectively learn the temporal 
dynamics of sea turtle nesting activity for hatching success prediction. 

2.4 Spliting Data 
Sea turtle hatching prediction was performed using an LSTM model, with the dataset 

divided into training and testing subsets to evaluate generalization and predictive accuracy. Four 
data split ratios were tested 60:40, 70:30, 80:20, and 90:10. Each influencing model performance 
differently. The 60:40 split enabled broader evaluation, 70:30 provided a balanced and reliable 
configuration, 80:20 enhanced learning depth with limited validation data, and 90:10 maximized 
training capacity while reducing generalization assessment strength. 

2.5 Modeling LSTM 
The LSTM model consists of two layers and is trained using time steps of 2, 5, 7, 30, and 

45 to capture the natural nesting patterns of sea turtles. Shorter time steps (2 - 7 days) reflect daily 
and weekly variations, while longer steps (30 - 45 days) capture monthly cycles and full 
incubation periods. LSTM was chosen for its effectiveness in modeling temporal dependencies 
and its suitability for small-scale datasets [17]. 

The optimized model employs 256 units in the first LSTM layer, 32 units in the second, a 
0.3 dropout rate, and a single dense output layer. It is trained using the Adam optimizer with a 
learning rate of 0.0005, a batch size of 32, and up to 100 epochs, with early stopping to mitigate 
overfitting. The Huber loss function (δ = 1.0) is applied, and performance is evaluated using Mean 
Absolute Error (MAE) and Root Mean Squared Error (RMSE). The selection of the LSTM model 
was conducted using a trial-and-error approach, where each parameter configuration was tested 
iteratively to identify the optimal model structure. The process was implemented through the 
following function  

def train_model (data, split, time_step, epochs=100, batch_size=32): 
    X_train = data[split][time_step] ['X_train'] 
    y_train = data[split][time_step] ['y_train'] 
    n_features = X_train.shape[2] 
    model = create_lstm_model(time_step=time_step, n_features=n_features) 
    early_stop = EarlyStopping( 
        monitor='val_loss', 
        patience=5, 
        restore_best_weights=True) 
    hist = model.fit( 
        X_train, y_train, 
        epochs=epochs, 
        batch_size=batch_size, 
        validation_split=0.2, 
        callbacks=[early_stop], 
        verbose=0 ) 
return model, hist 
The main limitation of the model during the training process lies in the limited availability 

of training data, which poses challenges in determining the optimal parameters for the LSTM 
model. However, a practical implication of this research is that conservation area managers can 
gain valuable insights specifically, that sea turtles are likely to return for nesting approximately 
seven days after their initial nesting event. 
2.6 Model Evaluation 

In this study, the model's performance in predicting sea turtle hatching success is evaluated 
using Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Both RMSE and 
MAE serve as indicators of model accuracy, providing insight into the magnitude of prediction 
errors relative to the actual values [29]. The equations for RMSE and MAE are presented. 
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RMSE =  !!
"
	∑ (yi − y`i)#"

$%!  

MAE = !
"
∑ |yi − y`i|"
$%!  

Beyond the two evaluation metrics mentioned above, the R² score (coefficient of 
determination) is employed to evaluate the deviation between the predicted and actual values[18]. 
The equation for R² is given. 

 

R# =  ∑ ((()*),)*)! #
∑ ()̅,)!! )#

 
 
3. Results and Discussion 
3.1 Results 

he experimental results, obtained from 810 data points, were evaluated using various data 
split ratios of 60:40, 70:30, 80:20, and 90:10, as well as time step configurations of 2, 5, 7, 30, 
and 45. The detailed outcomes of these evaluations are presented in Table 3. 

 

Table 3. Configuration data Based on Time Steps and split 
Time 
Steps 

Split 
data Shape x Shape 

y 
 Time 

Steps 
Split 
data Shape x Shape 

y 
2 60:40 484, 2, 6 484  7 80:20 641, 7, 6 641 

70:30 565, 2, 6 565  90:10 722, 7, 6 722 
80:20 646, 2, 6 646  30 60:40 456, 30, 6 456 
90:10 727, 2, 6 727  70:30 537, 30, 6 537 

5 60:40 481, 5, 6 481  80:20 618, 30, 6 618 
70:30 562, 5, 6 562  90:10 699, 30, 6 699 
80:20 643, 5, 6 643  45 60:40 441, 45, 6 441 
90:10 724, 5, 6 724  70:30 522, 45, 6 522 

7 60:40 479, 7, 6 479  80:20 603, 45, 6 603 
70:30 560, 7, 6 560  90:10 684, 45, 6 684 

 

Table 3 illustrates that the data distribution varies with each time step configuration. The 
size of the training set depends on the chosen time step, as the model utilizes this window to 
predict the next data point. A higher training percentage yields more data for model learning and 
less for testing. The combination of time steps and data split ratios produces 20 distinct LSTM 
models, each representing a unique configuration. The detailed predictive performance of these 
models is summarized in Table 4. 

 

 Table 4. Model performance in predicting based on data splitting and time step configurations 
Model Name Split Time Step RMSE MAE R2 
model9 60:40 7 17.89947 8.672685 0.339702 
model5 60:40 5 20.06034 13.32657 0.173601 
model10 70:30 7 17.03494 9.626145 0.162382 
model1 60:40 2 20.38972 11.32094 0.150654 
... ... ... ... ... ... 
model20 90:10 45 38.36831 32.69637 -2.54184 

 

Table 4 presents the evaluation of 20 LSTM models with varying time step lengths and 
data split ratios, assessed using RMSE, MAE, and R². Each model was designed to capture the 
underlying temporal patterns of sea turtle egg hatching data. Overall, the four most accurate 
models in capturing the incubation patterns were those trained on larger proportions of data (i.e., 
60:40 and 70:30 training-to-testing ratios). This is supported by their lower RMSE and MAE 
values and relatively higher R² scores, indicating better predictive reliability. The models are 
ranked in descending order based on their R² values, reflecting the extent to which each model 
explains the variance in the target variable. 
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Model9, utilizing a 60:40 data split and a time step of 7, achieved the highest performance 
with an MAE of 8.6727, RMSE of 17.8995, and R² of 0.3397. Model5, with the same data ratio 
and a time step of 5, followed with an MAE of 13.3266, RMSE of 20.0603, and R² of 0.1736. 
Model10, built with a 70:30 split and a time step of 7, resulted in an MAE of 9.6261, RMSE of 
17.0349, and R² of 0.1624. Model1, employing a 60:40 split with a time step of 2, produced an 
MAE of 11.3209, RMSE of 20.3897, and R² of 0.1507. 

In contrast, the remaining models demonstrated suboptimal performance, particularly those 
configured with smaller training sizes (e.g., 90:10 splits). These models exhibited R² values near 
zero or negative, suggesting poor generalization capabilities. Notably, Model20, which employed 
a 90:10 split and a time step of 45, recorded the lowest performance with an R² of -2.5418. Such 
findings indicate that insufficient training data severely limits the model’s ability to learn 
meaningful temporal dependencies and to capture the underlying variability in incubation 
duration, often performing worse than a simple mean-based baseline. The prediction results of 
the model can be seen in Figure 9. 

  

  

  

  
 

Figure 9: Visualization of the prediction results and actual data on the top mode 
 

Figure 9 illustrates the comparison between actual observations and LSTM model 
predictions, demonstrating the influence of short and long-time step configurations. The model 
shows competence in capturing seasonal hatching patterns, though performance declines in 
sequences with extended temporal dependencies. The predicted values of the incubation period, 
as produced by the model, are summarized in Table 5 

 

Table 5. Comparative analysis of actual versus predicted outcomes from top LSTM models under 
each time step and data partition setting 

Time Steps 7, 60:40 Time Steps 5, 60:40 Time Steps 7, 70:30 Time Steps 2, 60:40 
y_test y_pred y_test y_pred y_test y_pred y_test y_pred 
46 44.330379 44 22.36551 0 0.932037 45 43.526409 
45 44.374462 45 22.35416 0 1.819896 44 44.229607 
45 44.38007 46 22.40974 45 0.879532 45 44.346283 
45 44.356724 45 22.43518 47 2.461845 44 44.276794 

https://doi.org/10.31849/digitalzone.v16i2.
https://creativecommons.org/licenses/by-sa/4.0/deed.id


Published online on the website: https://journal.unilak.ac.id/index.php/dz 

Title of manuscript is short and clear, implies research results (First Author) 
 

n145 

Time Steps 7, 60:40 Time Steps 5, 60:40 Time Steps 7, 70:30 Time Steps 2, 60:40 
y_test y_pred y_test y_pred y_test y_pred y_test y_pred 
... ... ... ... ... ... ... ... 
45 42.924183 45 22.35974 45 44.103996 45 47.340778 

 

Based on Table 4, the comparison between the actual (y_test) and predicted (y_pred) values 
across various LSTM configurations time steps of 2, 5, 7, and 45 with different data splits 
demonstrate the model’s ability to generalize temporal patterns, though some bias remains. The 
configuration with 7-time steps and a 60:40 split achieved the highest predictive accuracy, with 
minor deviations (≈3.93) between actual and predicted values, indicating effective temporal 
pattern recognition. Conversely, the 5 time-step configurations with the same split produced 
structured yet inaccurate predictions, suggesting the model’s inability to capture temporal 
dependencies despite sufficient training data. The 7 time-step and 70:30 split configuration failed 
to generalize effectively, producing unrealistically low predictions due to limited exposure to data 
variability. Interestingly, the 2 time-step and 60:40 split configuration yielded predictions closely 
aligned with actual values, implying that short time windows can effectively capture short-term 
incubation dynamics. However, its low R² (0.15) and high MAE (11.32) indicate that while 
predictions are stable, the model lacks precision in representing the full variance of incubation 
duration. 

3.2 Discussion 
Handling sea turtle hatching datasets with seasonal time series patterns poses a major 

challenge in LSTM modeling. Interpolation techniques are applied to preserve data continuity 
without introducing artificial values, reflecting periods without nesting or hatching activity. To 
enhance contextual learning, a “nesting status” variable was introduced, where 0 indicates no 
hatching and 1 indicates hatching occurrence. The LSTM model effectively captures temporal 
patterns during training; however, limited test data constrain its predictive performance on unseen 
samples. As shown in Figure 9, where the model is still able to interpret and process an input 
value of 0 indicating a day without hatching activity and subsequently responds appropriately 
when it identifies the presence of such activity. The results of this study reveal that the 
performance of the LSTM model in predicting the incubation period of sea turtle eggs is highly 
dependent on two key factors: the data split configuration used for training and prediction, and 
the temporal pattern of nesting behavior, which directly influences the hatching period. The model 
interprets these behavioral patterns as time steps. 

The model demonstrates a better capability in recognizing temporal patterns when 
configured with longer time steps, provided that there is sufficient training data to support such a 
configuration. In this research, a time step length of 7 (corresponding to a weekly pattern) 
combined with a 60:40 training-to-testing data ratio was found to yield the best generalization 
performance for seasonal temporal trends. These findings underscore the critical role of test data 
availability in enabling the model to generalize effectively from the training data. This highlights 
a broader implication: model reliability in time series forecasting is not solely dependent on 
architecture, but also on the representativeness and completeness of the dataset used for both 
training and evaluation. 

The optimal configuration identified in this study involves a time step of 7 reflecting the 
weekly hatching pattern of sea turtle eggs and a data split ratio of 60:40. This configuration 
produces consistent, stable, and accurate predictions, with a moderate error range. In practical and 
operational terms, this means that the difference between actual and predicted incubation periods 
generally falls within an acceptable deviation of +3 to a maximum of +5 days. As such, the 
model's predictions demonstrate a tolerable level of deviation from real values. Under this 
configuration, the model achieved a Mean Absolute Error (MAE) of 8.67, a Root Mean Squared 
Error (RMSE) of 17.89, and a coefficient of determination (R²) of 0.34. These evaluation metrics 
suggest that the model is capable of identifying, learning, and generalizing the main temporal 
patterns present in the incubation dataset, even though some minor fluctuations remain 



Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, Volume 16, Issue 2, November  2025 : 135-149   n  
        ISSN: 1978-1520 

 

https://doi.org/10.31849/digitalzone.v16i2. 28856 
Digital Zone is licensed under a Creative Commons Attribution International (CC BY-SA 4.0) 

JCCS  Vol. x, No. x,  July 201x :  first_page – end_page 
 

146 n 

imperfectly captured.The findings emphasize that selecting appropriate time steps in LSTM 
modeling significantly influences the model’s ability to understand the structure of temporal data 
particularly in the context of seasonal and medium-term forecasting [17]. 

The configuration using a time step of 5 with a 60:40 data split reflects a condition in which 
the model tends to undervalue its predictions. This indicates that a shorter time step fails to 
adequately capture the underlying patterns and the complexity of temporal relationships within 
the data. This limitation is evident from the evaluation metrics, which show a Mean Absolute 
Error (MAE) of 13.33, a Root Mean Squared Error (RMSE) of 20.06, and a coefficient of 
determination (R²) of 0.17. Such performance suggests that the LSTM model, which is highly 
sensitive to the sliding window size, requires sufficient temporal input in order to effectively learn 
and generalize seasonal patterns. Inadequate input length restricts the model's ability to grasp 
recurring trends, resulting in less accurate predictions [30].  

The configuration with a time step of 7 and a 70:30 data split resulted in predictions that 
were not representative of the actual values. Although the model used a relatively long time step, 
the limited amount of training data hindered its ability to learn the underlying data structure 
effectively, leading to underfitting. This is reflected in the evaluation metrics: a Mean Absolute 
Error (MAE) of 9.63, a Root Mean Squared Error (RMSE) of 17.03, and a coefficient of 
determination (R²) of 0.16. Meanwhile, the configuration with a time step of 2 and a 60:40 split 
produced predictions that were consistent with the overall trend of the actual data, but with low 
accuracy, as indicated by a low R² value of 0.15. This suggests that the model was able to predict 
values close to the average but failed to capture the full variability of the data. These findings are 
consistent with previous research, which highlights the importance of balancing time step 
configuration with adequate training data volume to ensure that LSTM models can effectively 
learn temporal structures and produce reliable predictions [31] This supports the notion that the 
number of short-term memory units in an LSTM is not, by itself, a sufficient indicator of the 
model's ability to capture fluctuations or complex dynamics within sequential data, unless it is 
supported by an adequately wide time step window.. 

The residual analysis, presented in Figure 10, shows a weak correlation between predicted 
incubation periods and prediction errors. Most predictions cluster between 30 and 45 days, closely 
matching actual values, indicating good model performance within the dataset’s central range. 
Larger residuals occur in rare cases where predictions fall below 10 days or exceed 45 days, 
reflecting the model’s limited generalization beyond typical patterns. Statistical evaluation further 
reveals higher accuracy around the second quartile (Q2), where error margins are smaller, 
demonstrating the model’s strength in capturing average temporal dynamics of incubation 
periods. 

However, the model struggles to predict outlier cases with high precision. This limitation 
is consistent with the nature of LSTM models, which depend on patterns present in the training 
data. When such extreme patterns are underrepresented, the model fails to form reliable 
generalizations. These extreme residuals may also be explained by environmental variability, 
particularly changes in temperature and humidity. For instance, higher temperatures during dry 
seasons may accelerate embryonic development, leading to earlier-than-average hatching, while 
during rainy seasons, elevated humidity may slow down the process, resulting in delayed 
hatching. Additionally, nest microclimates such as those located in shaded or protected areas can 
further influence the rate of heat exchange, affecting incubation duration. Understanding this 
residual pattern is essential for interpreting the limitations of the model and for proposing future 
improvements, such as incorporating environmental features (e.g., soil temperature, rainfall, nest 
exposure) into the input variables to enhance model performance on extreme cases [32] The 
residual analysis is illustrated in Figure 10. 
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Figure 10: Residual plot 

The main limitation of this study is the limited training and testing data, which restricts the 
model’s ability to learn temporal patterns effectively. Future research should address this by 
expanding the dataset and employing more comprehensive monitoring data to improve model 
generalization and predictive performance using advanced deep learning methods. 

 
4. Conclusions 

The LSTM model with a 7-day time step and a 60:40 training-testing ratio achieved the 
highest predictive accuracy, reflecting the natural 7 - 14-day nesting cycle of sea turtles. The 
model effectively captured temporal incubation patterns, with residuals centered near zero, 
indicating reliable prediction performance. Although minor deviations occurred at extreme 
values, most predictions fell within acceptable error margins. These results highlight the model’s 
strong generalization capability and its potential to support data-driven conservation planning, 
particularly for optimizing nest monitoring, predator management, and sustainable ecotourism 
development in coastal ecosystems. 

The optimized LSTM model can serve as a predictive tool for sea turtle conservation 
monitoring, particularly within the Anambas Islands Marine Protected Area. To enhance 
predictive accuracy, future developments should incorporate internal environmental factors at 
nesting sites such as sand temperature, humidity, and predator activity along with the expansion 
of research data, as the current model relies solely on external environmental variables as input. 
Integrating this model into web-based or mobile spatial information systems could improve the 
efficiency of turtle monitoring data collection and support decision-making processes for 
conservation managers and ecotourism stakeholders. Further research is recommended to explore 
hybrid modeling approaches to enhance both the accuracy and interpretability of the predictive 
framework. 
 

 
References 
 
[1] L. P. LKKPN Pekanbaru, “Monitoring Penyu di Kawasan Kosnervasi Kepulauan 

Anambas Tahun 2024, [Internal report]. Available: LKKPN Pekanbaru. 
[2] T. Z. A. E. Hamino, I. N. Y. Parawangsa, L. A. Sari, and S. Arsad, “Efektifitas Pengelolaan 

Konservasi Penyu di Education Center Serangan , Denpasar Bali,” J. Mar. Coast. Sci. Vol., 
vol. 10, no. 1, pp. 18–34, 2021, [Online]. Available: https://e-
journal.unair.ac.id/JMCS/article/download/25604/13512 

[3] R. R. K. Sinaga, A. Hanif, F. Kurniawan, S. Roni, D. Y. W. Laia, and J. R. Hidayati, 
“Tingkat Keberhasilan Penetasan Telur Penyu Hijau (Chelonia mydas) dan Penyu Sisik 
(Eretmochelys imbricata) Di Pulau Mangkai Kepulauan Anambas,” J. Mar. Res., vol. 13, 
no. 1, pp. 92–99, 2024,https://doi.rg/10.14710/jmr.v13i1.38531. 

[4] A. Hanif, H. Damanhuri, S. Suparno, and M. U. Rusli, “Tingkat Penetasan Penyu Hijau di 

https://drive.google.com/file/d/1k6KVKxJnFbpxYjLU7XDLrGiiMfKGcPKL/view
https://scispace.com/pdf/effectiveness-of-sea-turtle-conservation-management-at-the-1ggm8ajrrh.pdf?utm
https://ejournal3.undip.ac.id/index.php/jmr/article/view/38531


Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, Volume 16, Issue 2, November  2025 : 135-149   n  
        ISSN: 1978-1520 

 

https://doi.org/10.31849/digitalzone.v16i2. 28856 
Digital Zone is licensed under a Creative Commons Attribution International (CC BY-SA 4.0) 

JCCS  Vol. x, No. x,  July 201x :  first_page – end_page 
 

148 n 

Pulau Pandan Kawasan Konservasi Pulau Pieh, Sumatera Barat,” J. Akuatiklestari, vol. 6, 
no. 1, pp. 1–9, 2022, https://doi.org/10.31629/akuatiklestari.v6i1.4696 

[5] Ikha Safitri, “Monitoring Penyu sebagai Upaya dalam Pengelolaan KKP3K Paloh 
Kalimantan Barat,” JurnalPengabdian Kpd. Masy. Nusant., vol. 5, no. 1, p. 120, 2024. 

[6] A. Agustriono, S. Rapindra, and R. Rahmaddeni, “Komparasi Multiple Linear Regression 
dan Decision Tree dalam Memprediksi Penetasan Penyu Jenis Chelonioidea Sp di Pulau 
Mangkai,” vol. 14, no. 1, pp. 9–17, 
2024.  https://ejurnal.umri.ac.id/index.php/JIK/article/view/6844 

[7] L. P. LKKPN Pekanbaru, “Laporan Monitoring Penyu Kawasan Konservasi Pieh dan 
Kawasan Konservasi Anambas Tahun 2022,” 2022. [Internal report]. Available LKKPN 
Pekanbaru. 

[8] L. P. LKKPN Pekanbaru, Laporan Monitoring Penyu 2024. 2024. [Internal report]. 
Available:  LKKPN Pekanbaru. 

[9] L. P. LKKPN Pekanbaru, “Laporan Monitoring Penyu Kawasan Konservasi Anambas 
Tahun 2023,” 2023. [Internal report]. Available: LKKPN Pekanbaru. 

[10] R. C. Edwards, B. J. Godley, and A. Nuno, “Exploring connections among the multiple 
outputs and outcomes emerging from 25 years of sea turtle conservation in Northern 
Cyprus,” J. Nat. Conserv., vol. 55, no. December 2019, p. 125816, 2020, 
htts://doi.org/10.1016/j.jnc.2020.125816. 

[11] L. P. LKKPN Pekanbaru, Laporan Kinerja Tahunan 2024 LKKPN Pekanbaru, vol. 11, 
no. 1. 2024.  

[12] A. Khumaidi, R. Raafi’udin, and I. P. Solihin, “Pengujian Algoritma Long Short Term 
Memory untuk Prediksi Kualitas Udara dan Suhu Kota Bandung,” J. Telemat., vol. 15, no. 
1, pp. 13–18, 2020, https://doi.org/10.61769/telematika.v15i1.340 

[13] N. Yudistrira et al., Prediksi deret waktu menggunakan Deep Learning, I. Indonesia: UB 
Pres, 2023. [Online]. Available: https://ubpress.ub.ac.id/?p=4433 

[14] Departemen Kelautan dan Perikanan, Pedoman Teknis Pengelolaan Konservasi Penyu. 
2009, 2009. 
https://perpustakaan.kkp.go.id/knowledgerepository/index.php?p=show_detail&id=1325
2 

[15] M. Alazab, S. Khan, S. S. R. Krishnan, Q. V. Pham, M. P. K. Reddy, and T. R. Gadekallu, 
“A Multidirectional LSTM Model for Predicting the Stability of a Smart Grid,” IEEE 
Access, vol. 8, pp. 85454–85463, 2020, https://doi.org/10.1109/ACCESS.2020.2991067. 

[16] A. Muneer, R. F. Ali, A. Almaghthawi, S. M. Taib, A. Alghamdi, and E. A. A. Ghaleb, 
“Short term residential load forecasting using long short-term memory recurrent neural 
network,” Int. J. Electr. Comput. Eng., vol. 12, no. 5, pp. 5589–5599, 
2022,  http://doi.org/10.11591/ijece.v12i5.pp5589-5599 

 [17] S. Siami-Namini, N. Tavakoli, and A. Siami Namin, “A Comparison of ARIMA and 
LSTM in Forecasting Time Series,” Proc. - 17th IEEE Int. Conf. Mach. Learn. Appl. 
ICMLA 2018, pp. 1394–1401, 2018, doi: 10.1109/ICMLA.2018.00227. 

[18] J. Wen, J. Yang, B. Jiang, H. Song, and H. Wang, “Big Data Driven Marine Environment 
Information Forecasting: A Time Series Prediction Network,” IEEE Trans. Fuzzy Syst., 
vol. 29, no. 1, pp. 4–18, 2021, https://doi.org/10.1109/TFUZZ.2020.3012393. 

[19] Y. Rifa’i, “Analisis Metodologi Pengumpulan Data di Penelitian Ilmiah,” Cendekia Inov. 
Dan Berbudaya, vol. 1, no. 1, pp. 31–37, 2023. https://doi.org/10.59996/cendib.v1i1.155 

[20] T. O. Hodson, “Root-mean-square error ( RMSE ) or mean absolute error ( MAE ): when 
to use them or not,” no. 2, pp. 5481–5487, 2022. https://doi.org/10.5194/gmd-15-5481-
2022 

[21] Y. P. Chen et al., “Real-time decision-making for Digital Twin in additive manufacturing 
with Model Predictive Control using time-series deep neural networks,” J. Manuf. Syst., 
vol. 80, no. March, pp. 412–424, 2025, https://doi.org/10.1016/j.jmsy.2025.03.009. 

[22] Z. M. Shaikh and S. Ramadass, “Unveiling deep learning powers: LSTM, BiLSTM, GRU, 

https://doi.org/10.31849/digitalzone.v16i2.
https://creativecommons.org/licenses/by-sa/4.0/deed.id
https://ojs.umrah.ac.id/index.php/akuatiklestari/article/view/4696
https://ejurnal.umri.ac.id/index.php/JIK/article/view/6844
https://drive.google.com/file/d/1B_mtbnkctfVEpqIy0iqvQLDJo7IFbyP9/view
https://drive.google.com/file/d/1B_mtbnkctfVEpqIy0iqvQLDJo7IFbyP9/view
https://drive.google.com/file/d/1k6KVKxJnFbpxYjLU7XDLrGiiMfKGcPKL/view
https://drive.google.com/file/d/1HHFJs8ZuLDKtkmDV17vW4CHyfHCNdnIh/view
https://www.sciencedirect.com/science/article/abs/pii/S1617138120300625
https://journal.ithb.ac.id/telematika/article/view/340
https://ubpress.ub.ac.id/?p=4433
https://perpustakaan.kkp.go.id/knowledgerepository/index.php?p=show_detail&id=13252
https://perpustakaan.kkp.go.id/knowledgerepository/index.php?p=show_detail&id=13252
https://researchers.cdu.edu.au/en/publications/a-multidirectional-lstm-model-for-predicting-the-stability-of-a-s
https://ijece.iaescore.com/index.php/IJECE/article/view/27800
https://ieeexplore.ieee.org/document/8614252/
https://ieeexplore.ieee.org/document/8614252/
https://doi.org/10.59996/cendib.v1i1.155
https://www.scirp.org/reference/referencespapers?referenceid=3717829
https://www.scirp.org/reference/referencespapers?referenceid=3717829
https://www.researchgate.net/publication/388006317_Real-Time_Decision-Making_for_Digital_Twin_in_Additive_Manufacturing_with_Model_Predictive_Control_using_Time-Series_Deep_Neural_Networks


Published online on the website: https://journal.unilak.ac.id/index.php/dz 

Title of manuscript is short and clear, implies research results (First Author) 
 

n149 

BiGRU, RNN comparison,” Indones. J. Electr. Eng. Comput. Sci., vol. 35, no. 1, pp. 263–
273, 2024, https://doi.org/10.11591/ijeecs.v35.i1.pp263-273. 

[23] D. W. A. R. F. E. P. A. Satyanarayan and A, “Charting EDA: Characterizing Interactive 
Visualization Use in Computational Notebooks with a Mixed-Methods Formalism,” IEEE 
Trans. Vis. Comput. Graph., vol. 31, pp. 1191–1201, 2025, 
https://doi.org/10.1109/TVCG.2024.3456217. 

[24] A. Wibowo, “Analisa Dan Visualisasi Data Penjualan Menggunakan Exploratory Data 
Analysis Pada PT. Telkominfra,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 
9, no. 3, pp. 2292–2304, 2022, https://jurnal.mdp.ac.id/index.php/jatisi/article/view/2737 

[25] Ceballos, Scikit-Learn Decision Trees Explained. 2019. [Online]. Available: 
https://towardsdatascience.com/scikit-learn-decision-trees-explained-803f3812290d 

[26] K. Rani Das, “A Brief Review of Tests for Normality,” Am. J. Theor. Appl. Stat., vol. 5, 
no. 1, p. 5, 2016, https://doi.org/10.11648/j.ajtas.20160501.12. 

[27] P. Mishra, C. M. Pandey, U. Singh, A. Gupta, C. Sahu, and A. Keshri, “Descriptive 
statistics and normality tests for statistical data,” Ann. Card. Anaesth., vol. 22, no. 1, pp. 
67–72, 2019, https://doi.org/10.4103/aca.ACA_157_18. 

[28] M. Aslam and M. Sattam Aldosari, “Analyzing alloy melting points data using a new 
Mann-Whitney test under indeterminacy,” J. King Saud Univ. - Sci., vol. 32, no. 6, pp. 
2831–2834, 2020, doi: 10.1016/j.jksus.2020.07.005. 

[29] H. Abbasimehr, M. Shabani, and M. Yousefi, “An optimized model using LSTM network 
for demand forecasting,” Comput. Ind. Eng., vol. 143, no. July 2019, p. 106435, 2020, 
https://doi.org/ 10.1016/j.cie.2020.106435. 

[30] K. Bandara, C. Bergmeir, and S. Smyl, “Forecasting across time series databases using 
recurrent neural networks on groups of similar series: A clustering approach,” Expert Syst. 
Appl., vol. 140, 2020, https://doi.org/10.1016/j.eswa.2019.112896. 

[31] F. A. Gers and F. Cummins, “A critique of neoclassical macroeconomics,” Choice Rev. 
Online, vol. 27, no. 09, pp. 27-5238-27–5238, 1990, https://doi.org/10.5860/choice.27-
5238 

[32] Sheavtiyan, T. R. Setyawati, and I. Lovadi, “Tingkat Keberhasilan Penetasan Telur Penyu 
Hijau (Chelonia Mydas, Linnaeus 1758) di Pantai Sebubus, Kabupaten Sambas,” J. 
Protobiont, vol. 3, no. 1, pp. 46–54, 2014. https://doi.org/10.26418/protobiont.v3i1.4581 

https://www.researchgate.net/publication/381868817_Unveiling_deep_learning_powers_LSTM_BiLSTM_GRU_BiGRU_RNN_comparison
https://www.computer.org/csdl/journal/tg/2025/01/10713350/20VwDLRSGR2
https://jurnal.mdp.ac.id/index.php/jatisi/article/view/2737
https://www.researchgate.net/publication/304339245_A_Brief_Review_of_Tests_for_Normality
https://www.sciencedirect.com/science/article/pii/S1018364720302159
https://www.sciencedirect.com/science/article/pii/S1018364720302159
https://www.semanticscholar.org/paper/An-optimized-model-using-LSTM-network-for-demand-Abbasimehr-Shabani/6b74918de044e2d1b53ca734cb741eb31fe85af6
https://www.sciencedirect.com/science/article/abs/pii/S0957417419306128
https://doi.org/10.5860/choice.27-5238
https://doi.org/10.5860/choice.27-5238
https://doi.org/10.26418/protobiont.v3i1.4581

