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Abstract: This study proposes a Long Short-Term Memory (LSTM) model to predict the hatching success
of sea turtle eggs in the Anambas Islands Marine Conservation Area, Indonesia. Leveraging nesting
data (2022—-2024) provided by LKKPN Pekanbaru and associated environmental variables, the model’s
performance was assessed across various configurations of time steps (2, 5, 7, 30, and 45 days) and
data splits (ranging from 60:40 to 90:10). The optimal configuration—7-day time step with a 60:40
train-test split—yielded RMSE = 17.90, MAE = 8.67, and R? = 0.34. Results revealed strong seasonal
nesting trends and statistically significant interspecies differences in incubation periods (p < 0.05).
While the model demonstrated high predictive accuracy for standard incubation durations (30—45
days), performance declined in extreme cases, highlighting the need for location-specific environmental
data. This research illustrates the practical application of LSTM for ecological time series forecasting
and provides a machine learning framework to support decision-making in ecotourism scheduling and
marine conservation planning in island-based coastal ecosystems.

Keywords: Conservation, LSTM, Sea Turtle, Mangkai, MAE, RMSE, Ecoturism, Anambas

1. Introduction

Indonesia’s marine region, particularly the Anambas Islands Regency, possesses
substantial potential for marine biodiversity and resource development [1]. The marine ecosystem
serves as a critical habitat for sea turtles (Cheloniidae), species that are currently threatened with
extinction due to continuous population decline [2]. This decline can be mitigated through
controlled hatching practices that ensure the continuity of the turtles’ life cycle [3]. The success
of sea turtle hatcheries depends largely on the availability and sustainability of healthy marine
ecosystems, where well-managed areas play a strategic role in conservation and ecotourism
activities, implemented through semi-natural or intensive hatching approaches [4]. Effective
conservation of sea turtles requires intensive, collaborative monitoring efforts among various
stakeholders, including local communities, conservation institutions, and government agencies
[5].

Mangkai Island, located within the Anambas Islands Marine Conservation Area, represents
one of the primary nesting sites for sea turtles [6]. Geographically situated at 03°05'32" N and
105°35'00" E and covering approximately 2.27 km?, this island is recognized as an ecologically
vital zone. Monitoring data collected by LKKPN Pekanbaru from 2022 to 2024 reveal a consistent
seasonal nesting pattern, with peak activity occurring between May and September, and the
highest frequency recorded in June and July. The total number of nesting events was reported as
2,641 in 2022, 2,851 in 2023, and 2,532 in 2024 [7]-[9]. These consistent temporal trends
highlight the importance of systematic natural resource management, ensuring that ecological
benefits can be sustainably enjoyed by local communities while maintaining biodiversity integrity
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[2]. Species-based conservation management, particularly for sea turtles, aims not only to enhance
conservation success but also to improve community livelihoods through sustainable utilization
[10]. Furthermore, species conservation offers opportunities for ecotourism development, which
can generate alternative income for local communities under conservation-based programs [9].

Promotional activities carried out by LKKPN Pekanbaru have demonstrated an increasing
trend in tourist arrivals, with 76 visitors in 2022, 122 in 2023, and 269 in 2024. The majority of
visits coincide with the sea turtle nesting season from April to November. Data on tourist activities
within the Anambas Islands and the National Marine Conservation Area show that 43.5% of
visitors engaged in snorkeling, 24.6% in diving, 3.6% in turtle watching, 2.2% in fishing, 0.7%
in survival training, and 25.4% in other recreational activities [11]. The low proportion of turtle-
watching tourists, despite the area’s ecological potential, underscores the need for enhanced
conservation-based ecotourism education and data-driven planning by conservation managers.
However, a key limitation remains: no reliable predictive system currently exists to accurately
estimate the hatching success rate of sea turtle eggs, which is essential for both conservation
decision-making and ecotourism management. As a result, conservation practices remain largely
reactive, relying on field observations that are often time-consuming, costly, and prone to
environmental variability.

To address this challenge, this study proposes the use of Long Short-Term Memory
(LSTM) networks to predict the hatching success rate of sea turtle eggs. The research framework
is built upon marine ecological theory, temporal data modeling, and information technology-
based systems. LSTM, a subclass of Recurrent Neural Networks (RNNs)[12]. Is specifically
designed to recognize and learn sequential dependencies in time-series data [13]. Since sea turtle
nesting and hatching cycles exhibit strong seasonal and temporal regularities [14], LSTM
provides an appropriate computational model for predicting these ecological phenomena. Its
capacity to capture nonlinear and long-term dependencies makes it a promising tool for ecological
forecasting and conservation management. The objective of this study is to develop a robust and
interpretable prediction model for sea turtle hatching success based on ecological and temporal
variables. The proposed model aims to assist conservation managers in designing strategic turtle-
watching ecotourism programs, providing accurate information to visitors, and contributing to
non-tax state revenue (PNBP) through sustainable marine-based ecotourism initiatives.
Although the application of machine learning in ecological prediction has been increasingly
explored, studies specifically addressing sea turtle hatching success remain scarce. Prior research
employing Multiple Linear Regression (MLR) and Decision Tree (DT) algorithms achieved Root
Mean Square Error (RMSE) values of 3.96 (training) and 4.95 (testing) for MLR, and 4.29
(training) and 4.82 (testing) for DT. Despite acceptable accuracy, these models failed to
incorporate temporal intervals between nesting and hatching events [6]. Conversely, conventional
LSTM models have achieved up to 97.13% accuracy in smart grid forecasting tasks [15].
Demonstrating their superiority in handling large-scale, long-term time-series data for predictive
planning in energy systems [16]. Empirical comparisons also show that LSTM consistently
outperforms ARIMA models in capturing nonlinear, long-term, and seasonal dependencies [17].
Although Transformer-based architectures have recently gained attention, they generally require
larger datasets and greater computational resources, making them less suitable for small scale
ecological studies. Within the context of sea turtle conservation, there remains a research gap in
integrating deep learning based approaches, particularly LSTM, with ecological variables such as
sand temperature, humidity, incubation duration, and nesting seasonality. Addressing this gap is
crucial for developing data driven predictive models that can simultaneously account for
environmental factors and temporal patterns[17] [18]. This study extends existing literature by
incorporating key ecological time-series variables including nesting activity, incubation period,
environmental conditions, and seasonal nesting trends to accurately predict hatching success rates
even under limited data conditions. Unlike prior approaches, the proposed optimized LSTM
model is specifically tailored for small-scale, seasonally dependent ecological datasets. Beyond
numerical prediction, this model supports evidence-based conservation management and strategic
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ecotourism planning. The novelty of this research is applying an LSTM approach models within
the context of sea turtle conservation in the Anambas Islands, an area that has received limited
scientific attention. This study not only emphasizes predictive accuracy but also demonstrates the
practical applicability of LSTM for promoting sustainable marine resource management and
enhancing conservation-oriented ecotourism planning.

2. Research Method

The research was conducted using a quantitative research approach [19]. The data were
processed through a secondary analysis approach and deep learning modelling, specifically using
the LSTM model to predict sea turtle egg hatching. The object of the study was sea turtles, with
the variables utilised in the research including nest code, egg-laying date, nest depth, number of
eggs, turtle species, tidal distance, hatching date, temperature, and humidity. The research stages
included data loading and comprehension, Exploratory Data Analysis (EDA) to observe data
structure, patterns, and characteristics, and data splitting for testing purposes, which consisted of
training and testing datasets with configurations of 90:10, 80:20, 70:30, and 60:40. The modelling
phase employed the LSTM method with time steps of 2, 5, 7, 30, and 45. The model was evaluated
using the Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the coefficient
of determination (R?) metrics to assess how well the model predicted the outcomes [20], it can be
seen in the flow diagram Figure 1.
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Figure 1: research workflow

Figure 1 illustrates the research workflow for predicting sea turtle hatching success using
an LSTM-based framework. The process begins with defining research objectives and collecting
both environmental and hatchery data, including temperature, humidity, nesting dates, incubation
periods, and hatching success rates. The preprocessing stage ensures data quality through
normality testing to Ensures that the data distribution meets the assumptions required for
statistical analysis, visualization, aggregation to Integrates multiple data sources into a unified
and standardized format, and interpolation to Fills in missing values and smooths irregularities to
maintain data continuity and completeness, aiming to produce clean and reliable data for
prediction. Feature engineering techniques process transforms raw variables into meaningful
features that enhance model performance. Derived features may include time-lagged values,
temperature averages, and environmental interaction indices, and the sliding window method are
applied to transform the data into supervised sequences suitable for LSTM temporal modeling.
The dataset is then divided into training and testing subsets, where the training data are used to
train the model and the testing data are used to evaluate its performance. The LSTM model is
trained to capture short and long-term temporal dependencies within the data. Once optimal
performance is achieved, the model is saved and evaluated using MAE, RMSE, and R? metrics to
validate its accuracy and generalization capability.

Choosing an appropriate model for ecological time-series prediction is essential to
capture both short- and long-term dependencies. While traditional models like ARIMA perform
well on linear stationary data, they struggle with the nonlinear and dynamic characteristics of
ecological systems [10]. Deep learning models, particularly LSTM networks, have shown
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superior performance in forecasting complex time-series data, including environmental and
marine ecosystem applications [21] [17]. Compared to GRU and Bi-LSTM, LSTM offers a
balanced trade-off between accuracy and computational efficiency. Although Transformer
models provide strong predictive capability, their high computational demand limits their use in
small-scale ecological studies. Therefore, LSTM is chosen for its robustness in modeling temporal
dependencies from limited ecological datasets while maintaining computational efficiency

[18][22].

2.1 Dataset Description

Data were systematically collected through the identification and selection of credible
sources. The primary dataset was obtained from the monitoring records of LKKPN Pekanbaru,
while environmental variables, including temperature and humidity, were retrieved from the
official BMKG open-access portal https://dataonline.bmkg.go.id/data-harian. The environmental
records were selected for their relevance to sea turtle nesting and hatching success. Each source
was critically evaluated to ensure data quality and research suitability in terms of completeness,
temporal coverage, and consistency. Only datasets that met these standards were retained for
analysis, as summarized in Table 1.

Table 1. The initial research data were compiled from multiple credible sources

Kode  Tgl Kedalaman Jumlah Jenis Pasang Tgl Suhu’ Kelemba
sarang' bertelur' sarang’ telur'  Penyu' surut' menetas' Y pan?

R1 4-Mar-22 30 150 sisik 15 25-Apr-22 262 88

Rls 12-Mar-22 30 129 sisik 15 24-Apr-22  26.7 82

R2 14-Mar-22 41 90 hijau 15 28-Apr-22  26.8 8l

39 31-May-24 37 140 sisik 22 18-Jul-24 30 80

1044 rows x 9 columns

'Source: Sea turtle monitoring data provided by LKKPN Pekanbaru
?Source: Environmental data retrieved from the BMKG open-access online portal

Each data source was critically evaluated to ensure quality, completeness, and consistency.
Only qualified datasets were included in the analysis. After selection, all data were harmonized
into a unified structured format to support preprocessing, exploratory analysis, and modelling.
This integrated dataset served as the empirical basis for predictive modelling, comprising 1,044
records with nine variables: nest code, laying date, nest depth, egg count, species, tidal range,
hatching date, temperature, and humidity.
2.2 Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) was conducted to provide an overall visual overview of
the dataset, as well as to examine and interpret the relationships between its variables [23].
Exploratory Data Analysis was selected due to its ability to present data in a visually appealing
and easily interpretable form for the audience[24]. A comprehensive visualization of the dataset
is provided in the following Figure 2.
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Figure 2c¢: Distribution of Turtle Species in the Research Dataset

Figure 2a This figure illustrates annual variations in sea turtle nesting activity from 2022
to 2024, showing distinct temporal patterns. Nesting typically increased in March, peaked
between May and July, and declined by October, with minimal activity in November and
December. The peak occurred in June 2022 (106 nests), July 2023 (136 nests), and May 2024 (45
nests), indicating fluctuations in nesting intensity and seasonality across years

Figure 2b illustrates that the distribution of turtle species is predominantly composed of
green turtles. This is attributable to their wider presence within the Anambas Islands and National
Marine Protected Area. In terms of physical characteristics, green turtles are generally larger than
hawksbill turtles [14]. Subsequently, the distribution of variables across different turtle species
can be observed in Figure 3.

Figure 2c¢ presents descriptive data analysis using the describe () function, providing key
statistical insights such as mean, standard deviation, range, and distribution. This step is essential
for LSTM modeling, as it ensures proper normalization or standardization to stabilize gradients,
accelerate convergence, and enhance predictive accuracy. Furthermore, this analysis aids in
identifying the most influential variables and detecting potential outliers that may degrade model
performance. The distribution of data variables across turtle species can be observed in Figure 4.
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Figure 3: Variable-wise distribution across turtle species

Variable-wise visualizations across turtle species were constructed to assess inter-species
variation Figure 3. Most variables exhibited similar distributions between green and hawksbill
turtles, although several data points fell outside the expected ranges, suggesting the existence of
outliers. Detecting these deviations was essential to determine whether the variations stemmed
from ecological differences or measurement inconsistencies. Outlier detection was conducted
using the Interquartile Range (IQR) method [25] , and the results were visualized through boxplots
Figure 4.
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Figure 4: Outlier detection plots for each variable

Outlier detection plots for each variable the plots revealed that nest depth, egg count, and
tide variables contained several outliers positioned beyond the whiskers, indicating deviations
from normal ranges. These outliers may represent either natural ecological variation or potential
recording errors. A detailed summary of outlier thresholds and frequencies by turtle species is
presented in Table 2, providing a clearer understanding of species-specific variability.

Table 2. Outlier summary variable across turtle species

Variables Turtle Lower Upper Count Below Count Above
Species  Bound  Bound Lower Bound Upper Bound
Kedalaman sarang HIJ au 18.50 102.50 ! 40
Sisik 20.00 68.00 0 3
Tumlah telur Hijgu 40.75 138.75 7 12
Sisik 23.75 225.75 0 0
Suhu Hijau 26.15 31.35 8 0
Sisik 25.20 30.80 0 0
Kelembaban Hijau 70.50 90.50 0 10

A further temporal visualization Figure 5 was developed to explore the recurrence of
seasonal nesting behaviors. The results confirmed consistent nesting peaks between May and
September, reinforcing the cyclical nature of sea turtle reproduction. However, the 2024 dataset
only covered observations up to June, thereby limiting temporal continuity and reducing the
completeness of the time series. Recognizing this limitation is vital to ensure that time-dependent
features are accurately modeled in the LSTM framework.

The Exploratory Data Analysis stage provides a comprehensive understanding of temporal
behaviors, species composition, statistical characteristics, and potential irregularities within the
dataset. This analytical stage is conducted to ensure the validity of subsequent modeling
processes. The visual and statistical insights obtained through EDA strengthen the methodological
foundation of this study by ensuring that the data used are clean, well-structured, and scientifically
robust for predicting the hatching success rate of sea turtles using the LSTM model.
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Figure 5: seasonal nesting patterns of sea turtles
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2.3 Data Pre-Processing

Data preprocessing was conducted to ensure consistency and quality before
model development LSTM. Feature engineering involves the creation, modification, or selection
of new variables that more effectively represent the underlying phenomena under investigation.
This stage plays a crucial role in enhancing the model’s ability to capture complex relationships
among variables. Using the following pseudocode df'tgl menetas'| = pd.to_datetime
(df'tgl menetas']), df'tgl bertelur'] = pd.to_datetime(df'tgl bertelur']), and df['lama_inkubasi']
= (dff'tgl_menetas'] - df['tgl bertelur']).dt. days the incubation period was derived by calculating
the difference between the hatching date and the laying date.

A normality test was performed to assess whether the data conformed to a normal
distribution. This procedure aimed to verify the distributional characteristics of the dataset prior
to further statistical analysis. The Shapiro Wilk test was applied for this purpose. The results
revealed that the target variable, incubation period, did not exhibit a normal distribution for either
turtle species. Specifically, the p-value for hawksbill turtles was 1.6944145415499533¢-21, and
for green turtles, 8.979710046018405¢-12. Both values were considerably lower than the
significance threshold (o = 0.05), thus leading to the rejection of the null hypothesis (Ho) of
normality [26][27] . The spread of the incubation period data for each turtle species is illustrated
in Figure 6.
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As the incubation period data were non-normally distributed, the Mann—Whitney U test
was used to compare hawksbill and green turtles, yielding a p-value of 0.0000007459 (a = 0.05),
indicating a significant difference [28]. Consequently, the species could not be combined, and
hawksbill turtle data were excluded to allow focused aggregation on green turtles, facilitating the
construction of a complete time series suitable for LSTM modeling.

To prepare the dataset for LSTM modeling, it was transformed into a time series format
using the nesting date as the index. Data for green turtles were aggregated by date to create unique
daily records, and missing dates were inserted with zeros to indicate non-nesting days. A binary
feature, “nesting status,” was added (1 for nesting days, 0 for non-nesting days) to enable the
model to learn both nesting and non-nesting patterns, ensuring a complete and chronologically
ordered time series illustrated in Figure 7.
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memd 74.6+ KB m¢
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Transformation Assignment

Figure 7: Data Composition Before and After Aggregation and Index Assignment

Data interpolation was applied to address missing values and maintain the continuity of
the time series, ensuring no loss of essential information for model training. A complete date
index was generated, and the sliding window method was used to create input sequences capturing
temporal dependencies. Time steps of 2, 5, 7, 30, and 45 were tested to represent short-, medium,
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and long-term nesting patterns, enabling the LSTM model to effectively learn the temporal
dynamics of sea turtle nesting activity for hatching success prediction.

2.4 Spliting Data

Sea turtle hatching prediction was performed using an LSTM model, with the dataset
divided into training and testing subsets to evaluate generalization and predictive accuracy. Four
data split ratios were tested 60:40, 70:30, 80:20, and 90:10. Each influencing model performance
differently. The 60:40 split enabled broader evaluation, 70:30 provided a balanced and reliable
configuration, 80:20 enhanced learning depth with limited validation data, and 90:10 maximized
training capacity while reducing generalization assessment strength.

2.5 Modeling LSTM
The LSTM model consists of two layers and is trained using time steps of 2, 5, 7, 30, and
45 to capture the natural nesting patterns of sea turtles. Shorter time steps (2 - 7 days) reflect daily
and weekly variations, while longer steps (30 - 45 days) capture monthly cycles and full
incubation periods. LSTM was chosen for its effectiveness in modeling temporal dependencies
and its suitability for small-scale datasets [17].
The optimized model employs 256 units in the first LSTM layer, 32 units in the second, a
0.3 dropout rate, and a single dense output layer. It is trained using the Adam optimizer with a
learning rate of 0.0005, a batch size of 32, and up to 100 epochs, with early stopping to mitigate
overfitting. The Huber loss function (& = 1.0) is applied, and performance is evaluated using Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE). The selection of the LSTM model
was conducted using a trial-and-error approach, where each parameter configuration was tested
iteratively to identify the optimal model structure. The process was implemented through the
following function
def train_model (data, split, time_step, epochs=100, batch_size=32):
X train = data[split][time step] ['X train']
y_train = data[split] [time_step] [y _train']
n_features = X train.shape[2]
model = create_Istm_model(time_step=time _step, n_features=n_features)
early stop = EarlyStopping(
monitor="val_loss’,
patience=35,
restore_best weights=True)
hist = model. fit(
X train, y_train,
epochs=epochs,
batch_size=batch_size,
validation_split=0.2,
callbacks=[early stop],
verbose=0 )
return model, hist
The main limitation of the model during the training process lies in the limited availability
of training data, which poses challenges in determining the optimal parameters for the LSTM
model. However, a practical implication of this research is that conservation area managers can
gain valuable insights specifically, that sea turtles are likely to return for nesting approximately
seven days after their initial nesting event.
2.6 Model Evaluation
In this study, the model's performance in predicting sea turtle hatching success is evaluated
using Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Both RMSE and
MAE serve as indicators of model accuracy, providing insight into the magnitude of prediction
errors relative to the actual values [29]. The equations for RMSE and MAE are presented.

https://doi.org/10.31849/digitalzone.v16i2. 28856
Digital Zone is licensed under a Creative Commons Attribution International (CC BY-SA 4.0)



https://doi.org/10.31849/digitalzone.v16i2.
https://creativecommons.org/licenses/by-sa/4.0/deed.id

Published online on the website: https://journal.unilak.ac.id/index.php/dz; W43

1 .
RMSE = J; T (yi— y'D)?
1 L
MAE=-%1L, |lyi - y'i|
Beyond the two evaluation metrics mentioned above, the R? score (coefficient of
determination) is employed to evaluate the deviation between the predicted and actual values[18].
The equation for R? is given.

2 _ Zilp(xi)—xi)2
R® = Ti(E-x))2

3. Results and Discussion
3.1 Results

he experimental results, obtained from 810 data points, were evaluated using various data
split ratios of 60:40, 70:30, 80:20, and 90:10, as well as time step configurations of 2, 5, 7, 30,
and 45. The detailed outcomes of these evaluations are presented in Table 3.

Table 3. Configuration data Based on Time Steps and split

Time Split Shape Time  Split Shape

Steps data Shape x Steps  data Shape x

2 60:40 484,2,6 484 7 80:20 641,7,6 641
70:30 565,2,6 565 90:10 722,7,6 722
80:20 646,2,6 646 30 60:40 456,30,6 456
90:10 727,2,6 727 70:30 537,30,6 537

5 60:40 481,5,6 481 80:20 618,30,6 618
70:30 562,5,6 562 90:10 699,30,6 699
80:20 643,5,6 643 45 60:40 441,45,6 441
90:10 724,5,6 724 70:30 522,45,6 522

7 60:40 479,7,6 479 80:20 603,45,6 603
70:30 560,7,6 560 90:10 684,45,6 684

Table 3 illustrates that the data distribution varies with each time step configuration. The
size of the training set depends on the chosen time step, as the model utilizes this window to
predict the next data point. A higher training percentage yields more data for model learning and
less for testing. The combination of time steps and data split ratios produces 20 distinct LSTM
models, each representing a unique configuration. The detailed predictive performance of these
models is summarized in Table 4.

Table 4. Model performance in predicting based on data splitting and time step configurations

Model Name  Split  Time Step RMSE MAE R?

model9 60:40 7 17.89947  8.672685  0.339702
model5 60:40 5 20.06034  13.32657 0.173601
model10 70:30 7 17.03494  9.626145 0.162382
modell 60:40 2 20.38972  11.32094  0.150654

model20 90:10 45 38.36831  32.69637 -2.54184

Table 4 presents the evaluation of 20 LSTM models with varying time step lengths and
data split ratios, assessed using RMSE, MAE, and R?. Each model was designed to capture the
underlying temporal patterns of sea turtle egg hatching data. Overall, the four most accurate
models in capturing the incubation patterns were those trained on larger proportions of data (i.e.,
60:40 and 70:30 training-to-testing ratios). This is supported by their lower RMSE and MAE
values and relatively higher R? scores, indicating better predictive reliability. The models are
ranked in descending order based on their R? values, reflecting the extent to which each model
explains the variance in the target variable.
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Model9, utilizing a 60:40 data split and a time step of 7, achieved the highest performance
with an MAE of 8.6727, RMSE of 17.8995, and R? of 0.3397. Model5, with the same data ratio
and a time step of 5, followed with an MAE of 13.3266, RMSE of 20.0603, and R? of 0.1736.
Model10, built with a 70:30 split and a time step of 7, resulted in an MAE of 9.6261, RMSE of
17.0349, and R? of 0.1624. Modell, employing a 60:40 split with a time step of 2, produced an
MAE of 11.3209, RMSE of 20.3897, and R? of 0.1507.

In contrast, the remaining models demonstrated suboptimal performance, particularly those
configured with smaller training sizes (e.g., 90:10 splits). These models exhibited R? values near
Zero or negative, suggesting poor generalization capabilities. Notably, Model20, which employed
a 90:10 split and a time step of 45, recorded the lowest performance with an R? of -2.5418. Such
findings indicate that insufficient training data severely limits the model’s ability to learn
meaningful temporal dependencies and to capture the underlying variability in incubation
duration, often performing worse than a simple mean-based baseline. The prediction results of
the model can be seen in Figure 9.

Prediksi vs Aktual (Split 60:40, Time Step 7) Prediksi vs Aktual (Split 90:10, Time Step 2)
Adtual

Figure 9: Visualization of the prediction results and actual data on the top mode

Figure 9 illustrates the comparison between actual observations and LSTM model
predictions, demonstrating the influence of short and long-time step configurations. The model
shows competence in capturing seasonal hatching patterns, though performance declines in
sequences with extended temporal dependencies. The predicted values of the incubation period,
as produced by the model, are summarized in Table 5

Table 5. Comparative analysis of actual versus predicted outcomes from top LSTM models under
each time step and data partition setting
Time Steps 7, 60:40 Time Steps 5, 60:40 Time Steps 7, 70:30 Time Steps 2, 60:40

y_test y pred y_test y_pred y_test y_pred y_test y_pred

46 44330379 44 22.36551 0 0.932037 45 43.526409
45 44.374462 45 22.35416 0 1.819896 44 44.229607
45 44.38007 46 22.40974 45 0.879532 45 44.346283
45 44356724 45 22.43518 47 2461845 44 44.276794
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Time Steps 7, 60:40 Time Steps 5, 60:40 Time Steps 7, 70:30 Time Steps 2, 60:40
y_test y pred y_test y_pred y_test y_pred y_test y_pred

45 42.924183 45 22.35974 45 44.103996 45 47.340778

Based on Table 4, the comparison between the actual (y_fest) and predicted (y_pred) values
across various LSTM configurations time steps of 2, 5, 7, and 45 with different data splits
demonstrate the model’s ability to generalize temporal patterns, though some bias remains. The
configuration with 7-time steps and a 60:40 split achieved the highest predictive accuracy, with
minor deviations (=3.93) between actual and predicted values, indicating effective temporal
pattern recognition. Conversely, the 5 time-step configurations with the same split produced
structured yet inaccurate predictions, suggesting the model’s inability to capture temporal
dependencies despite sufficient training data. The 7 time-step and 70:30 split configuration failed
to generalize effectively, producing unrealistically low predictions due to limited exposure to data
variability. Interestingly, the 2 time-step and 60:40 split configuration yielded predictions closely
aligned with actual values, implying that short time windows can effectively capture short-term
incubation dynamics. However, its low R? (0.15) and high MAE (11.32) indicate that while
predictions are stable, the model lacks precision in representing the full variance of incubation
duration.

3.2 Discussion

Handling sea turtle hatching datasets with seasonal time series patterns poses a major
challenge in LSTM modeling. Interpolation techniques are applied to preserve data continuity
without introducing artificial values, reflecting periods without nesting or hatching activity. To
enhance contextual learning, a “nesting status” variable was introduced, where 0 indicates no
hatching and 1 indicates hatching occurrence. The LSTM model effectively captures temporal
patterns during training; however, limited test data constrain its predictive performance on unseen
samples. As shown in Figure 9, where the model is still able to interpret and process an input
value of 0 indicating a day without hatching activity and subsequently responds appropriately
when it identifies the presence of such activity. The results of this study reveal that the
performance of the LSTM model in predicting the incubation period of sea turtle eggs is highly
dependent on two key factors: the data split configuration used for training and prediction, and
the temporal pattern of nesting behavior, which directly influences the hatching period. The model
interprets these behavioral patterns as time steps.

The model demonstrates a better capability in recognizing temporal patterns when
configured with longer time steps, provided that there is sufficient training data to support such a
configuration. In this research, a time step length of 7 (corresponding to a weekly pattern)
combined with a 60:40 training-to-testing data ratio was found to yield the best generalization
performance for seasonal temporal trends. These findings underscore the critical role of test data
availability in enabling the model to generalize effectively from the training data. This highlights
a broader implication: model reliability in time series forecasting is not solely dependent on
architecture, but also on the representativeness and completeness of the dataset used for both
training and evaluation.

The optimal configuration identified in this study involves a time step of 7 reflecting the
weekly hatching pattern of sea turtle eggs and a data split ratio of 60:40. This configuration
produces consistent, stable, and accurate predictions, with a moderate error range. In practical and
operational terms, this means that the difference between actual and predicted incubation periods
generally falls within an acceptable deviation of +3 to a maximum of +5 days. As such, the
model's predictions demonstrate a tolerable level of deviation from real values. Under this
configuration, the model achieved a Mean Absolute Error (MAE) of 8.67, a Root Mean Squared
Error (RMSE) of 17.89, and a coefficient of determination (R?) of 0.34. These evaluation metrics
suggest that the model is capable of identifying, learning, and generalizing the main temporal
patterns present in the incubation dataset, even though some minor fluctuations remain
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imperfectly captured.The findings emphasize that selecting appropriate time steps in LSTM
modeling significantly influences the model’s ability to understand the structure of temporal data
particularly in the context of seasonal and medium-term forecasting [17].

The configuration using a time step of 5 with a 60:40 data split reflects a condition in which
the model tends to undervalue its predictions. This indicates that a shorter time step fails to
adequately capture the underlying patterns and the complexity of temporal relationships within
the data. This limitation is evident from the evaluation metrics, which show a Mean Absolute
Error (MAE) of 13.33, a Root Mean Squared Error (RMSE) of 20.06, and a coefficient of
determination (R?) of 0.17. Such performance suggests that the LSTM model, which is highly
sensitive to the sliding window size, requires sufficient temporal input in order to effectively learn
and generalize seasonal patterns. Inadequate input length restricts the model's ability to grasp
recurring trends, resulting in less accurate predictions [30].

The configuration with a time step of 7 and a 70:30 data split resulted in predictions that
were not representative of the actual values. Although the model used a relatively long time step,
the limited amount of training data hindered its ability to learn the underlying data structure
effectively, leading to underfitting. This is reflected in the evaluation metrics: a Mean Absolute
Error (MAE) of 9.63, a Root Mean Squared Error (RMSE) of 17.03, and a coefficient of
determination (R?) of 0.16. Meanwhile, the configuration with a time step of 2 and a 60:40 split
produced predictions that were consistent with the overall trend of the actual data, but with low
accuracy, as indicated by a low R? value of 0.15. This suggests that the model was able to predict
values close to the average but failed to capture the full variability of the data. These findings are
consistent with previous research, which highlights the importance of balancing time step
configuration with adequate training data volume to ensure that LSTM models can effectively
learn temporal structures and produce reliable predictions_[31] This supports the notion that the
number of short-term memory units in an LSTM is not, by itself, a sufficient indicator of the
model's ability to capture fluctuations or complex dynamics within sequential data, unless it is
supported by an adequately wide time step window..

The residual analysis, presented in Figure 10, shows a weak correlation between predicted
incubation periods and prediction errors. Most predictions cluster between 30 and 45 days, closely
matching actual values, indicating good model performance within the dataset’s central range.
Larger residuals occur in rare cases where predictions fall below 10 days or exceed 45 days,
reflecting the model’s limited generalization beyond typical patterns. Statistical evaluation further
reveals higher accuracy around the second quartile (Q2), where error margins are smaller,
demonstrating the model’s strength in capturing average temporal dynamics of incubation
periods.

However, the model struggles to predict outlier cases with high precision. This limitation
is consistent with the nature of LSTM models, which depend on patterns present in the training
data. When such extreme patterns are underrepresented, the model fails to form reliable
generalizations. These extreme residuals may also be explained by environmental variability,
particularly changes in temperature and humidity. For instance, higher temperatures during dry
seasons may accelerate embryonic development, leading to earlier-than-average hatching, while
during rainy seasons, elevated humidity may slow down the process, resulting in delayed
hatching. Additionally, nest microclimates such as those located in shaded or protected areas can
further influence the rate of heat exchange, affecting incubation duration. Understanding this
residual pattern is essential for interpreting the limitations of the model and for proposing future
improvements, such as incorporating environmental features (e.g., soil temperature, rainfall, nest
exposure) into the input variables to enhance model performance on extreme cases [32] The
residual analysis is illustrated in Figure 10.
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Figure 10: Residual plot

The main limitation of this study is the limited training and testing data, which restricts the
model’s ability to learn temporal patterns effectively. Future research should address this by
expanding the dataset and employing more comprehensive monitoring data to improve model
generalization and predictive performance using advanced deep learning methods.

4. Conclusions

The LSTM model with a 7-day time step and a 60:40 training-testing ratio achieved the
highest predictive accuracy, reflecting the natural 7 - 14-day nesting cycle of sea turtles. The
model effectively captured temporal incubation patterns, with residuals centered near zero,
indicating reliable prediction performance. Although minor deviations occurred at extreme
values, most predictions fell within acceptable error margins. These results highlight the model’s
strong generalization capability and its potential to support data-driven conservation planning,
particularly for optimizing nest monitoring, predator management, and sustainable ecotourism
development in coastal ecosystems.

The optimized LSTM model can serve as a predictive tool for sea turtle conservation
monitoring, particularly within the Anambas Islands Marine Protected Area. To enhance
predictive accuracy, future developments should incorporate internal environmental factors at
nesting sites such as sand temperature, humidity, and predator activity along with the expansion
of research data, as the current model relies solely on external environmental variables as input.
Integrating this model into web-based or mobile spatial information systems could improve the
efficiency of turtle monitoring data collection and support decision-making processes for
conservation managers and ecotourism stakeholders. Further research is recommended to explore
hybrid modeling approaches to enhance both the accuracy and interpretability of the predictive
framework.
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