C4.5 Algorithm Implementation For Public Sentyment Analysis Covid-19 Vaccine
Abstract
Corona virus disease is one of the dangerous diseases and has been prevented by giving vaccinations. In an effort to prevent, there must be a positive or negative public response. One of the media facilities used to convey public responses is Twitter. The public's reaction can be analyzed using public sentiment analysis using C4.5 algorithm. The purpose of paper for determine public's response to the administration of moderna and pfizer vaccinations. The implemented methodology starts from collecting data taken from tweets, pre-processing, classification using the C4.5 algorithm and validation using k-fold cross validation. Based on the results of the moderna keyword analysis, the positive sentiment response was 6% and negative sentiment was 94%, while the pfizer keyword positive sentiment was 12.4% and negative sentiment was 87.6%. The results of test iteration that have been carried out 3 times, the average error value is 38%.
Downloads
References
A. Susilo et al., “Coronavirus Disease 2019: Tinjauan Literatur Terkini,” J. Penyakit Dalam Indones., vol. 7, no. 1, pp. 45–67, 2020, doi: 10.7454/jpdi.v7i1.415.
S. Yousefinaghani, R. Dara, S. Mubareka, A. Papadopoulos, and S. Sharif, “An analysis of COVID-19 vaccine sentiments and opinions on Twitter,” Int. J. Infect. Dis., vol. 108, pp. 256–262, 2021, doi: 10.1016/j.ijid.2021.05.059.
L. Y. C. Wong and J. Burkell, “Motivations for sharing news on social media,” ACM Int. Conf. Proceeding Ser., vol. Part F1296, 2017, doi: 10.1145/3097286.3097343.
Y. Shi et al., “Knowledge and attitudes of medical staff in Chinese psychiatric hospitals regarding COVID-19,” Brain, Behav. Immun. - Heal., vol. 4, no. March, p. 100064, 2020, doi: 10.1016/j.bbih.2020.100064.
V. K. S. Que, A. Iriani, and H. D. Purnomo, “Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 2, pp. 162–170, 2020, doi: 10.22146/jnteti.v9i2.102.
M. A. Fauzi, “Random forest approach fo sentiment analysis in Indonesian language,” Indones. J. Electr. Eng. Comput. Sci., vol. 12, no. 1, pp. 46–50, 2018, doi: 10.11591/ijeecs.v12.i1.pp46-50.
H. Tuhuteru and A. Iriani, “Analisis Sentimen Perusahaan Listrik Negara Cabang Ambon Menggunakan Metode Support Vector Machine dan Naive Bayes Classifier,” J. Inform. J. Pengemb. IT, vol. 3, no. 3, pp. 394–401, 2018, doi: 10.30591/jpit.v3i3.977.
B. Laurensz and Eko Sediyono, “Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 2, pp. 118–123, 2021, doi: 10.22146/jnteti.v10i2.1421.
M. I. Dualingga, E. Budianita, M. Fikry, M. Affandes, and F. Yanto, “Klasifikasi Komentar Terhadap Vaksin Covid-19 Menggunakan Algoritma C4 . 5 Pada Media Sosial Instagram,” no. November, pp. 24–31, 2021.
M. R. Fajriansyah and Siswanto, “Analisis Sentimen Pengguna Twitter Terhadap Partai Politik Pendukung Calon Gubernur Di Jakarta Menggunakan Algoritma C4 . 5 Decision Tree Learning,” Skanika, vol. 1, no. 2, pp. 697–703, 2018, [Online]. Available: https://jom.fti.budiluhur.ac.id/index.php/SKANIKA/article/view/278
A. Sutedi, H. Aulawi, E. Walujodjati, D. Destiani, and S. Fatimah, “C4 . 5 Algorithm for Disaster Identifier System,” J. Tek. Inform., vol. 3, no. 3, pp. 1–6, 2022.
B. Hermanto, A. S. Azhari SN, and F. P. Putra, “Analisis Kinerja Decision Tree C4.5 dalam Prediksi Potensi Pelunasan Kredit Calon Debitur,” INOVTEK Polbeng - Seri Inform., vol. 2, no. 2, p. 189, 2017, doi: 10.35314/isi.v2i2.206.
H. Irsyad, A. Farisi, and M. R. Pribadi, “Klasifikasi Opini Masyarakat Terhadap Jasa ISP MyRepublic dengan Naïve Bayes,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 1, p. 30, 2019, doi: 10.22146/jnteti.v8i1.487.
Y. I. Kurniawan, “Perbandingan Algoritma Naive Bayes dan C.45 dalam Klasifikasi Data Mining,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, p. 455, 2018, doi: 10.25126/jtiik.201854803.
Y. P.T, “Analisis Sentimen Vaksin Covid19 Menggunakan Naive Bayes,” 2022.
Copyright (c) 2022 Digital Zone: Jurnal Teknologi Informasi dan Komunikasi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.