Hyperparameter Optimization of the Perceptron Algorithm for Determining the Feasibility of Research Proposals and Community Service
DOI:
https://doi.org/10.31849/digitalzone.v15i2.17812Keywords:
Research, Community Service, Perceptron, LPPM, GridSearchCV, RandomisedSearchCVAbstract
Higher education in Indonesia includes diploma, bachelor, master, specialist, and doctoral programmes organised by universities. The Institute for Research and Community Service (LPPM) is in charge of assessing lecturers' proposals. This research aims to optimise the Perceptron algorithm to assess proposal eligibility using Turnitin plagiarism scores and reviewer scores. The optimisation results show that Perceptron accuracy reaches 99.44% to 99.63% at various training data ratios. GridSearchCV achieved 100% accuracy, while RandomisedSearchCV recorded accuracy between 98.89% to 99.63%. GridSearchCV also had the lowest MSE , despite higher Loss values, indicating a sacrifice in generalisation ability. Perceptron Default and RandomisedSearchCV had higher MSE and Loss, but remained low. GridSearchCV's AUC reached 100%, while Perceptron Default and RandomisedSearchCV showed very high AUC, ranging from 99.25% to 99.98%. Overall, the Perceptron algorithm is effective in assessing proposal eligibility with high accuracy.
References
F. Ayu, “Implementasi Jaringan Saraf Tiruan Untuk Menentukan Kelayakan Proposal Tugas Akhir,” It J. Res. Dev., Vol. 3, No. 2, Pp. 44–53, 2019, https://Doi.org/10.25299/Itjrd.2019.Vol3(2).2271.
S. Arlis, D. S. Ekajaya, And M. Yanto, “Pola Penentuan Status Peminjaman Dengan Algoritma Perceptron”, Sebatik, Vol. 23, No. 2, Pp. 619–623, Dec. 2019
Rini Sovia And Musli Yanto, “Jaringan Syaraf Tiruan Analisa Pengaruh Gizi Buruk Terhadap Perkembangan Balita Dengan Algoritma Perceptron,” J. Ilm. Media Sisfo, Vol. 12, No. 1, Pp. 1003–1011, 2018.
A. Prasetya Wibawa, W. Lestar, A. Bella Putra Utama, I. Tri Saputra, And Z. Nabila Izdihar, “Multilayer Perceptron Untuk Prediksi Sessions Pada Sebuah Website Journal Elektronik,” Indones. J. Data Sci., Vol. 1, No. 3, Pp. 57–67, 2020, https://Doi.org/10.33096/Ijodas.V1i3.15.
L. L. Van Fc, “Implementasi Jaringan Syaraf Tiruan Untuk Menentukan Kepribadian Mahasiswa Menggunakan Algoritma Perceptron,” Vol. X, No. X, Pp. 144–158, 2020. https://journal.unilak.ac.id/index.php/dz/article/view/4019
S. N. Kapita, S. Mahdi, And F. Tempola, “Penilaian Pengetahuan Siswa Dengan Jaringan Syaraf Tiruan Algoritma Perceptron,” No. 09, Pp. 372–381, 2020. https://ejournal.unkhair.ac.id/index.php/Techno/article/view/1712
E. Fitri And S. N. Nugraha, “Optimasi Kinerja Linear Regression, Random Forest Regression Dan Multilayer Perceptron Pada Prediksi Hasil Panen,” Inti Nusa Mandiri, Vol. 18, No. 2, Pp. 210–217, 2024, https://Doi.org/10.33480/Inti.V18i2.5269.
A. Dwi Sripamuji, I. Ramadhanti, R. Riski Amalia, J. Saputra, And B. Prihatnowo, “Penerapan Algoritma Support Vector Machine Dan Multi-Layer Perceptron Pada Klasifikasi Topik Berita,” Janapati, Vol. 11, No. 2, Pp. 84–91, 2022, [Online]. Available: Https://Doi.Org/10.23887/Janapati.V11i2.44151
Y. M. Nimas Ratna Sari1*, “Penerapan Multilayer Perceptron Untuk Identifikasi Kanker Payudara,” Cakrawala Ilm., Vol. 2, No. 8, Pp. 3261–3268, 2023, https://doi.org/10.31862/9785426311961.
W. I. Sabilla, C. B. Vista, And D. S. Hormansyah, “Implementasi Multilayer Perceptron Untuk Memprediksi Harapan Hidup Pada Pasien Penyakit Kardiovaskular,” J. Sains Komput. Inform., Vol. 6, No. 1, Pp. 57–68, 2022. http://dx.doi.org/10.30645/j-sakti.v6i1.425
N. F. Khusna, A. Rahmah, And R. K. Nur, “Implementasi Random Forest Dalam Klasifikasi Kasus Stunting Pada Balita Dengan Hyperparameter Tuning Grid Search,” Vol. 2024, No. Senada, Pp. 791–801, 2024. https://doi.org/10.33005/senada.v4i1.334
F. O. Awalullaili, D. Ispriyanti, And T. Widiharih, “Klasifikasi Penyakit Hipertensi Menggunakan Metode Svm Grid Search Dan Svm Genetic Algorithm (Ga),” J. Gaussian, Vol. 11, No. 4, Pp. 488–498, 2023, https://Doi.org/10.14710/J.Gauss.11.4.488-498.
A. Nadroh, D. N. Triwibowo, And R. B. B. Sumantri, “Klasifikasi Status Gizi Balita Menggunakan Algoritma Support Vector Machine Dengan Optimasi Grid Search Cross-Validation,” Vol. 8, No. 2, Pp. 250–257, 2024. https://doi.org/10.46880/jmika.Vol8No2.pp250-257
G. Abdurrahman, H. Oktavianto, And M. Sintawati, “Optimasi Algoritma Xgboost Classifier Menggunakan Hyperparameter Gridesearch Dan Random Search Pada Klasifikasi Penyakit Diabetes,” Informal Informatics J., Vol. 7, No. 3, P. 193, 2022, https://Doi.org/10.19184/Isj.V7i3.35441.
H. Wijaya, D. P. Hostiadi, And E. Triandini, “Meningkatkan Prediksi Penjualan Retail Xyz Dengan Teknik Optimasi Random Search Pada Model Xgboost,” Spinter (Prosiding Semin. Has. Penelit. Inform. Dan Komputer), Vol. 1, No. 2, Pp. 829–833, 2024.
M. D. Y. Fordana And N. Rochmawati, “Optimisasi Hyperparameter Cnn Menggunakan Random Search Untuk Deteksi Covid-19 Dari Citra X-Ray Dada,” J. Informatics Comput. Sci., Vol. 4, No. 01, Pp. 10–18, 2022, https://Doi.org/10.26740/Jinacs.V4n01.P10-18.






