Digital Image Based DSS for Assessing Tomato Quality using AHP-TOPSIS Method
DOI:
https://doi.org/10.31849/digitalzone.v15i2.19060Keywords:
AHP, Decision Support Systems, Digital Image Processing, Tomato, TOPSISAbstract
Tomatoes are a major export commodity in the country's plantation sector. This increases the urgency of efforts to increase tomato productivity, both in terms of quantity and quality. Evaluation of tomato quality currently relies on the degree of ripeness and skin texture. The conventional method currently used involves manual inspection, which can allow for misjudgment and economic loss. This research aims to use a digital image-based approach by utilizing a decision support system that combines the AHP and TOPSIS methods to assess tomato quality based on color and texture criteria. This research evaluates and ranks nine tomato images that have good quality, by giving higher priority to skin texture than skin color. Evaluation results from three tests showed that the system was able to determine the quality of tomatoes with an average kappa value of 0.78, which interpreted the results of good agreement between the system and expert judgments.
References
M. Syahdan, H. A. Karim, dan I. Iinnaninengseh, “Peningkatan Produktivitas Tanaman Tomat (Lycopersicon Esculentum Mill.) dengan Pemberian Berbagai Jenis Pupuk Kompos dan Komposisi NPK,” J. Agroterpadu, vol. 1, no. 1, hlm. 29, Apr 2022, https://doi.org/10.35329/ja.v1i1.2818.
A. P. Dewi Nazari, R. Rusdiansyah, A. P. Meklin Siregar, dan A. Rahmi, “Pertumbuhan dan Hasil Tanaman Tomat (Lycopersicum Esculentum Mill.) pada Pemberian Pupuk Zn dan Jarak Tanam yang Berbeda,” ZIRAAAH Maj. Ilm. Pertan., vol. 45, no. 3, hlm. 241, Sep 2020, https://doi.org/10.31602/zmip.v45i3.3482.
S. Rakhmawan, F. Nofrida, dan Suheri, Statistik Perdagangan Luar Negeri Indonesia (Ekspor) 2022, vol. 1. Jakarta: BPS RI, 2022.
P. K. Ng’ang’a dan C. R. Vogl, “Quality perception of organically grown tomatoes (Lycopersicon esculentum Mill.) in Vienna, Austria,” Int. J. Agric. Res. Innov. Technol., vol. 5, no. 2, hlm. 16–20, Jan 2016, https://doi.org/10.3329/ijarit.v5i2.26263.
S. R. Rupanagudi, B. S. Ranjani, P. Nagaraj, dan V. G. Bhat, “A cost effective tomato maturity grading system using image processing for farmers,” dalam 2014 International Conference on Contemporary Computing and Informatics (IC3I), Mysore, India: IEEE, Nov 2014, hlm. 7–12. https://doi.org/10.1109/IC3I.2014.7019591.
F. I.-R. P. Computer, “Implementasi Multi-Objective Optimization On The Basis Of Ratio Analysis (MOORA) Untuk Menentukan Kualitas Buah Mangga Terbaik,” INA-Rxiv, preprint, Apr 2018. doi: 10.31227/osf.io/yqbse.
Parlia Romadiana, Fitriyanti, dan Delpiah Wahyuningsih, “Penerapan Metode Fuzzy Multi Attribut Decision Making (FMADM) Dan Simple Additive Weighting (SAW) Untuk Penentuan Bujang Dayang Kota Pangkalpinang,” Techno Xplore J. Ilmu Komput. Dan Teknol. Inf., vol. 5, no. 2, hlm. 56–63, Nov 2020, https://doi.org/10.36805/technoxplore.v5i2.1150.
E. L. Damanik dan R. M. Simanjorang, “Sistem Pendukung Keputusan Menentukan Pemutusan Hubungan Kerja Karyawan CV. Biring Ndu Cahaya Panglong Dengan Metode AHP,” J. Nas. Komputasi Dan Teknol. Inf. JNKTI, vol. 4, no. 1, hlm. 7–13, Feb 2021, https://doi.org/10.32672/jnkti.v4i1.2659.
M. Mulyadi, I. Ismail, dan Z. K. Simbolon, “Sistem Pendukung Keputusan Untuk Menentukan Kualitas Bibit Padi Menggunakan Metode Analytical Hierarchy Process,” Sisfo J. Ilm. Sist. Inf., vol. 4, no. 2, Okt 2020, https://doi.org/10.29103/sisfo.v4i2.7949.
I. As’ad dan N. Kurniati, “Sistem Pendukung Keputusan Pemilihan Bibit Padi Unggul menggunakan Metode Topsis Technique for Order Preference by Similarity to Ideal Solution,” vol. 3, no. 4, 2022.
A. B. Nasution, D. Widyati, dan F. H. Ritonga, “Sistem Pendukung Keputusan Pemilihan Buah-Buahan Layak Jual Menggunakan Metode MOORA,” Sist. Pendukung Keputusan Dengan Apl., vol. 1, no. 2, hlm. 58–67, Sep 2022, https://doi.org/10.55537/spk.v1i2.116.
N. I. Humaira B, M. Herman, N. Nurhikma, dan A. B. Kaswar, “Klasifikasi Tingkat Kualitas dan Kematangan Buah Tomat Berdasarkan Fitur Warna Menggunakan Jaringan Syaraf Tiruan,” J. Embed. Syst. Secur. Intell. Syst., vol. 2, no. 1, hlm. 18, Nov 2021, https://doi.org/10.26858/jessi.v2i1.20329.
A. S. Agung, A. F. D. Sr, M. S. Hersyam, A. B. Kaswar, dan D. Andayani, “Classification of Tomato Quality Based on Color Features and Skin Characteristics Using Image Processing Based Artificial Neural Network,” J. Tek. Inform. JUTIF, vol. 4, no. 5, hlm. 1021–1032, 2023, https://doi.org/10.52436/1.jutif.2023.4.5.780.
L. Dinar, A. Suyantohadi, dan A. F. Fallah, “Estimation of Class Quality Analysis Based on Color and Shape Nutmeg (Myristica fragrans houtt) Using Image Processing Technology and Neural Networks,” J. Keteknikan Pertan., vol. 26, no. 1, hlm. 51–57, Apr 2012, https://doi.org/10.19028/jtep.26.1.51-57.
P. A. R. Devi dan H. Rosyid, “Pemaparan Materi Dasar Pengolahan Citra Digital untuk Upgrade Wawasan Siswa di SMK Dharma Wanita Gresik,” vol. 2, no. 4, 2022.
I. M. Khusna dan N. Mariana, “Sistem Pendukung Keputusan Pemilihan Bibit Padi Berkualitas Dengan Metode AHP Dan Topsis,” J. Sisfokom Sist. Inf. Dan Komput., vol. 10, no. 2, hlm. 162–169, Jul 2021, https://doi.org/10.32736/sisfokom.v10i2.1145.
N. P. L. Santiari dan I. G. S. Rahayuda, “Perancangan Sistem Informasi Aset Perusahaan Pada CV di Bidang Properti,” Best Account. Inf. Syst. Inf. Technol. Bus. Enterp. This Link OJS Us, vol. 7, no. 1, hlm. 1–15, Jun 2022, https://doi.org/10.34010/aisthebest.v7i1.6127.
R. W. Sari, A. P. Windarto, dan E. Irawan, “Penerapan Algoritma PROMETHEE Pada Seleksi Proposal Program Kreativitas Mahasiswa (PKM) pada STIKOM Tunas Bangsa Pematangsiantar,” Pros. Semin. Nas. Ris. Inf. Sci. SENARIS, vol. 1, hlm. 641, Sep 2019, https://doi.org/10.30645/senaris.v1i0.70.
K. R. Burgener, S. S. Lichtenberg, A. Lomax, D. J. Storm, D. P. Walsh, dan J. A. Pedersen, “Diagnostic testing of chronic wasting disease in white-tailed deer (Odocoileus virginianus) by RT-QuIC using multiple tissues,” PLOS ONE, vol. 17, no. 11, hlm. e0274531, Nov 2022, https://doi.org/10.1371/journal.pone.0274531.
W. Permatasari dan Y. Yerimadesi, “Analisis Validitas dan Praktikalitas dari Modul Minyak Bumi Berbasis Guided Discovery Learning,” Edukimia, vol. 2, no. 1, hlm. 25–31, Feb 2020, https://doi.org/10.24036/ekj.v2.i1.a118.
A. B. W. Putra, R. Rihartanto, dan A. M. Alhumaerah, “Penerapan K-Means Clustering Dalam Pengelompokan Lipstik Matte Lip Cream Berdasarkan Warna RGB,” JST J. Sains Terap., vol. 5, no. 1, Mar 2019, https://doi.org/10.32487/jst.v5i1.527.
R. Vijaya, K. Prudvi, L. Ravi, dan M. Jogendra, “Grey level to RGB using YCbCr color space Technique,” Int. J. Comput. Appl., vol. 147, no. 7, hlm. 25–28, Agu 2016, https://doi.org/10.5120/ijca2016911180.
R. A. Rizal dkk., “Analisis Gray Level Co-Occurrence Matrix (Glcm) dalam Mengenali Citra Ekspresi Wajah,” vol. 3, no. 2, 2019.
A. Kurniasari, D. Erwanto, dan P. N. Rahayu, “Ekstraksi Fitur Tekstur dan Warna pada Kulit Katak Menggunakan GLCM dan Momen Warna,” J. ELTIKOM, vol. 6, no. 1, hlm. 1–12, Jan 2022, https://doi.org/10.31961/eltikom.v6i1.287.
A. Khorsandi dan L. Li, “A Multi-Analysis of Children and Adolescents’ Video Gaming Addiction with the AHP and TOPSIS Methods,” Int. J. Environ. Res. Public. Health, vol. 19, no. 15, hlm. 9680, Agu 2022,https://doi.org/10.3390/ijerph19159680.






