Deep Learning for Horticulture: Convolutional Neural Network Driven Classification of Banana Types

Authors

  • Ida Astuti Universitas Gunadarma
  • Lutfi Nabhan Ibrahim Universitas Gunadarma
  • Winda Widya Ariestya Universitas Gunadarma
  • Syamsi Ruhama Universitas Gunadarma
  • Diny Wahyuni Universitas Gunadarma

DOI:

https://doi.org/10.31849/digitalzone.v16i1.23812

Keywords:

Horticulture, Classification, Banana, Deep Learning, Convolutional Neural Network

Abstract

One of the most widely grown horticulture fruits in Indonesia is the banana. In addition to its various health benefits, bananas are a good source of carbohydrates and vitamins A, C, and E. There are a lot of different kinds of bananas in Indonesia, and occasionally people have trouble telling them apart. This study uses a Convolutional Neural Network (CNN), a Deep Learning technique, to categorize bananas. Four different types of bananas—Cavendish, Kepok, Raja, and Tanduk—were classified. Planning, analysis, creating a banana classification model with CNN, and assessing the outcomes are the four phases of the research process. Data preprocessing, CNN model creation, training, and testing procedures are the next steps in the categorization model design process, which starts with the collection of banana data using a smartphone camera. The optimal model was obtained with the accuracy value of 96%, the average precision and recall values of 97% and 96% respectively. It was found based on test results with multiple tuning parameters, including dataset partition, optimizer use, and epoch. This study offers novelty in terms of the use of a large banana image dataset, extensive exploration of CNN parameters, and the potential application of the model in applications for the horticultural industry. In addition, this study contributes to the development of image-based AI technology in agricultural product classification, which is still relatively underexplored in Indonesia

References

[1] N. Nazimah, N. Nilahayati, S. Safrizal, and S. Fachrurrazi, “Pemberdayaan Masyarakat Di Desa Baloy Kecamatan Blang Mangat Dalam Aplikasi Pupuk Hayati Untuk Budidaya Tanaman Hortikultura,” J. Vokasi, vol. 6, no. 1, p. 40, 2022, doi: 10.30811/vokasi.v6i1.2923.

[2] N. A. Syafriani, Afiah, “PKM Petani Pisang Di Kampar,” vol. 2, no. 1, pp. 113–119, 2022, doi: https://doi.org/10.31004/covit.v2i1.4525.

[3] I. F. A and P. S. Rizki, “Pengaruh Karbon Aktif Dari Kulit Pisang Tanduk Terhadap Limbah Cair Tahu Menggunakan Parameter pH, Cod (Chemical Oxygen Demand), Do (Disolved Oxygen) & Chlorida,” JIRK J. Innov. Res. Knowl. Vol.2, No.10, Maret 2023, vol. 2, no. 10, pp. 4249–4261, 2023, doi: https://doi.org/10.53625/jirk.v2i10.5465.

[4] Badan Pusat Statistik, “Produksi Tanaman Buah-Buahan Tahun 2022,” 2022. [Online]. Available: https://www.bps.go.id

[5] M. J. Akbar, M. W. Sardjono, M. Cahyanti, and E. R. Swedia, “Perancangan Aplikasi Mobile Untuk Klasifikasi Sayuran Menggunakan Deep Learning Convolutional Neural Network,” Sebatik, vol. 24, no. 2, pp. 300–306, 2020, doi: 10.46984/sebatik.v24i2.1134.

[6] I. Arifin, R. F. Haidi, and M. Dzalhaqi, “Penerapan Computer Vision Menggunakan Metode Deep Learning pada Perspektif Generasi Ulul Albab,” J. Teknol. Terpadu, vol. 7, no. 2, pp. 98–107, 2021, doi: 10.54914/jtt.v7i2.436.

[7] A. A. Elngar et al., “Image Classification Based On CNN: A Survey,” J. Cybersecurity Inf. Manag., vol. 6, no. 1, p. PP. 18-50, 2021, doi: 10.5281/zenodo.4897990.

[8] S. P. Adenugraha, V. Arinal, and D. I. Mulyana, “Klasifikasi Kematangan Buah Pisang Ambon Menggunakan Metode KNN dan PCA Berdasarkan Citra RGB dan HSV,” J. Media Inform. Budidarma, vol. 6, no. 1, pp. 9–17, 2022, doi: 10.30865/mib.v6i1.3287.

[9] Y. Amrozi, D. Yuliati, A. Susilo, N. Novianto, and R. Ramadhan, “Klasifikasi Jenis Buah Pisang Berdasarkan Citra Warna dengan Metode SVM,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 11, no. 3, pp. 394–399, 2022, doi: 10.32736/sisfokom.v11i3.1502.

[10] D. Widodo, A. Fauzi, and A. Sembiring, “Identification of Banana Fruit Types Using the Backpropagation Method,” J. Math. Technol., vol. 2, no. 2, pp. 300–307, 2023, doi: https://doi.org/10.63893/matech.v2i2.155.

[11] Y. E. Yana and N. Nafi’iyah, “Klasifikasi Jenis Pisang Berdasarkan Fitur Warna, Tekstur, Bentuk Citra Menggunakan SVM dan KNN,” Res. J. Comput. Inf. Syst. Technol. Manag., vol. 4, no. 1, p. 28, 2021, doi: 10.25273/research.v4i1.6687.

[12] I. A. Sabilla, C. S. Wahyuni, C. Fatichah, and D. Herumurti, “Determining banana types and ripeness from image using machine learning methods,” in Proceeding - 2019 International Conference of Artificial Intelligence and Information Technology, ICAIIT 2019, IEEE, 2019, pp. 407–412. doi: 10.1109/ICAIIT.2019.8834490.

[13] P. Sudharshan Duth and B. S. Shashidhara, “Banana Grading using Deep Learning Techniques,” in IEEE International Conference on Data Science and Information System (ICDSIS), Hassan, India: IEEE, 2022, pp. 1–5. doi: 10.1109/ICDSIS55133.2022.9915998.

[14] R. S. M. Senthilarasi, S Md.MansoorRoomi, M Maheesa, “Deep Learn Bananas: A Transfer Learning for Banana Variety Classification,” in Communications in Computer and Information Science, Singapore: Springer, Singapore, 2020. doi: https://doi.org/10.1007/978-981-15-8697-2_53.

[15] F. Huda and M. P. K. Putra, “Klasifikasi Jenis Buah Pisang Menggunakan Algoritma Convolutional Neural Network,” J. Artif. Intell. Technol. Inf., vol. 1, no. 3, pp. 100–105, 2023, doi: 10.58602/jaiti.v1i3.61.

[16] J. Halim and A. N. Fajar, “Klasifikasi Pisang Berbasis Algoritma VGG16 Melalui Metode CNN Deep Learning,” Inf. (Jurnal Inform. dan Sist. Informasi), vol. 15, no. 1, pp. 1–17, 2023, doi: 10.37424/informasi.v15i1.190.

[17] Y. A. Suwitono and F. J. Kaunang, “Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Daun Dengan Metode Data Mining SEMMA Menggunakan Keras,” J. Komtika (Komputasi dan Inform., vol. 6, no. 2, pp. 109–121, 2022, doi: 10.31603/komtika.v6i2.8054.

[18] A. Kamilaris and F. X. Prenafeta-Boldú, “A literature survey on the use of Convolutional Neural Networks in agriculture,” IRTA Torre Marimon, Inst. Food Agric. Res. Technol. Torre Marimon, Caldes Montbui, Barcelona, Cambridge Univ. Press, pp. 1–28, 2018, doi: 10.1017/S0021859618000436

[19] I. Astuti, W. W. Ariestya, and B. Solehudin, “Deteksi Objek Daun Semanggi Secara Real Time Menggunakan CNN-Single Shot Multibox Detector (SSD),” J. Ilm. FIFO, vol. 14, no. 1, p. 47, 2022, doi: 10.22441/fifo.2022.v14i1.005.

[20] L. Zhao and Z. Zhang, “A improved pooling method for convolutional neural networks,” Nature Publishing Group UK, 2024. doi: 10.1038/s41598-024-51258-6.

[21] H. A. Akbar Fikri, “Prediksi Harga Emas Dengan Algoritma Backpropagation,” J. Sains Komput. & Inform., vol. 7, no. 1, pp. 182–189, 2023, doi: 10.30645/j sakti.v7i1.582

[22] A. Julianto, A. Sunyoto, and F. W. Wibowo, “Optimasi Hyperparameter Convolutional Neural Network Untuk Klasifikasi Penyakit Tanaman Padi,” Tek. Teknol. Inf. dan Multimed., vol. 3, no. 2, pp. 98–105, 2022, doi: 10.46764/teknimedia.v3i2.77.

Downloads

Published

2025-05-30

How to Cite

Deep Learning for Horticulture: Convolutional Neural Network Driven Classification of Banana Types. (2025). Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 16(1), 12-25. https://doi.org/10.31849/digitalzone.v16i1.23812