Seleksi Pegawai dan Dosen UMRI Berbasis E-Recruitment Menggunakan Metode K-Nearest Neighbor

  • Doni Winarso Universitas Muhammadiyah Riau
  • Edo Edo Arribe Universitas Muhammadiyah Riau
Keywords: Seleksi Pegawai, Seleksi Dosen, E-Recruitmen, Employee Recruitment, Lecturer Recruitment

Abstract

Abstrak- Rekrutmen merupakan langkah awal yang dilakukan oleh Universitas Muhammadiyah Riau (UMRI), guna menjaring calon tenaga kerja yang professional. Profesionalitas dibutuhkan sebagai salah satu input bagi lembaga pendidikan Muhammadiyah untuk menghasilkan output yang sesuai dengan visi dan misi lembaga pendidikan Muhammadiyah. UMRI sebagai Amal Usaha Muhammadiyah (AUM) dibidang pendidikan perlu melakukan beberapa upaya untuk bisa mendapatkan calon pegawai dan dosen yang professional. Seiring perkembangan ilmu pengetahuan dan teknologi, UMRI perlu mengimplementasikan Erecruitment sebagai salah satu teknologi yang bisa digunakan untuk menjaring pegawai dan dosen yang profesional. Penelitian ini bertujuan bagaimana penerapan metode klasifikasi KNearest Neighbor (K-NN) dalam system e-recruitment untuk seleksi awal pegawai dan dosen UMRI. Metode K-NN akan menghitung tingkat kemiripan dengan cara mengukur jarak antara persyaratan yang ditetapkan oleh bagian kepegawaian UMRI dengan data yang dimiliki oleh calon pegawai dan dosen. Selanjutnya diambil nilai K dari pelamar yang nilai kemiripannya ≥80%. Pelamar yang mimiliki nilai kemiripan ≥80% inilah nantinya yang akan diikutsertakan pada tes berikutnya. Penelitian ini menghasilkan sebuah system informasi e-recruitment yang dikembangkan menggunakan metode pengembangan perangkat lunak waterfall.
Kata kunci: Seleksi Pegawai, Seleksi Dosen, E-Recruitmen.

Abstract- Recruitment is the first step taken by Muhammadiyah University of Riau (UMRI), in order to capture prospective professional workforce. Professionalism is needed as an input for the Muhammadiyah educational institution to produce output in accordance with the vision and mission of the Muhammadiyah educational institution. UMRI as a Amal Usaha Muhammadiyah (AUM) in the field of education needs to make some efforts to get prospective employees and professional lecturers. Along with the development of science and technology, UMRI needs to implement E-recruitment as one of technology that can be used to gather professional officers and lecturers. This study aims how the application of the K-Nearest Neighbor (K-NN) classification method in e-recruitment system for early selection of employees and lecturers of UMRI. The K-NN method will calculate the level of similarity by measuring the distance between the requirements set by the employment department of UMRI with data held by prospective employees and lecturers. Furthermore, K value was taken from applicants whose value is similar to ≥80%. Applicants who have a similarity value of ≥80% later this will be included in the next test. This research produces an e-recruitment information system developed using waterfall software development method.
Keywords: Employee Recruitment, Lecturer Recruitment, E-recruitment.

Downloads

Download data is not yet available.

References

[1] S. M. Zin, N. Fazlin, H. Nik, R. C. Mat, and W. N. I. W. Alias, “E-Recruitment Technology : The Effective Source of Recruitment,” vol. 6, pp. 84–89, 2016.
[2] Marwansyah, Manajemen Sumber Daya Manusia. Bandung: Alfabeta, 2014.
[3] R. Ramaabaanu and M. Saranya, “Importance and Problems of E- Recruitment,” Int. J. Res., vol. 1, no. 9, pp. 445–450, 2014.
[4] X. Wu et al., “Top 10 algorithms in data mining,” Knowl. Inf. Syst., vol. 14, no. 1, pp. 1– 37, 2008.
[5] N. Bhatia and C. Author, “Survey of Nearest Neighbor Techniques,” IJCSIS) Int. J. Comput. Sci. Inf. Secur., vol. 8, no. 2, pp. 302–305, 2010.
[6] Aryanto, D. Winarso, and A. Zebua, “Rancang Bangun Sistem Informasi Manajemen Persediaan dan Penjualan Berbasis Web,” vol. 4, no. 1, 2015.
[7] A. Suárez Sánchez, F. J. Iglesias-Rodríguez, P. Riesgo Fernández, and F. J. de Cos Juez, “Applying the K-nearest neighbor technique to the classification of workers according to their risk of suffering musculoskeletal disorders,” Int. J. Ind. Ergon., vol. 52, pp. 92–99, 2014.
[8] M. I. Sikki, “Pengenalan Wajah Menggunakan K-Nearest Neighbour Dengan Praproses Transformasi Wavelet,” paradigma, vol. X, no. 2, pp. 159–172, 2009.
[9] E. Prasetyo, “Data Mining Mengolah Data Menjadi Informasi Menggunakan Matlab,” 1st ed., A. Sahala, Ed. Yogyakarta: Andi Publisher, 2014, p. 150.
[10] E. Wahyudi and S. Hartati, “Case-Based Reasoning untuk Diagnosis Penyakit Jantung 1,” IJCCS, vol. 11, no. 1, 2017.
[11] A. Mardiyah and A. Harjoko, “Metode Segmentasi Paru-paru dan Jantung Pada Citra X- Ray Thorax,” IJEIS, vol. 1, no. 2, pp. 35–44, 2012.
Published
2017-11-16
How to Cite
Winarso, D., & Edo Arribe, E. (2017). Seleksi Pegawai dan Dosen UMRI Berbasis E-Recruitment Menggunakan Metode K-Nearest Neighbor. Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 8(2), 71-80. https://doi.org/10.31849/digitalzone.v8i2.631
Abstract viewed = 330 times
PDF downloaded = 436 times