ANALISIS KELAYAKAN KREDIT KOPERASI MITRA TANI MANDIRI DENGAN ALGORITMA NAÏVE BAYES
Abstract
A cooperative is a financial institution located in each village. Cooperatives can provide solutions to the community when the community's economic needs are decreasing. One of the services provided by cooperatives to the community is credit loans. This research focuses on analyzing the suitability of prospective cooperative member creditors who are eligible for credit applications. This analysis requires attributes or variables that are suitable for use in the credit application process. The attributes used in this research are that prospective creditors must be of sufficient age, disciplined in the payment process according to the monthly due date, have income and have allowances. This research uses data mining techniques using the Naïve Bayes algorithm, and data processing uses the Rapidminer application. The results obtained were based on the results of processing 182 data, namely obtaining an accuracy value of 81.32%, precision of 89.36% and recall of 77.78%. In this case, credit worthiness analysis with four attributes using the Naïve Bayes algorithm is suitable for use with accurate and precise results.
Downloads
References
[2] A. C. Kelayakan Pemberian Kredit Nasabah Koperasi Menggunakan Algoritma and R. Setiawan, “Techno Xplore Jurnal Ilmu Komputer dan Teknologi Informasi.”
[3] R. Retnosari, P. Studi, S. Informasi, S. Nusa, and M. Jakarta, “ANALISIS KELAYAKAN KREDIT USAHA MIKRO BERJALAN PADA PERBANKAN DENGAN METODE NAIVE BAYES”.
[4] D. Alfian Kurniawan and Y. Indra Kurniawan, “Aplikasi Prediksi Kelayakan Calon Anggota Kredit Menggunakan Algoritma Naïve Bayes.”
[5] H. Annur, “KLASIFIKASI MASYARAKAT MISKIN MENGGUNAKAN METODE NAÏVE BAYES,” 2018.
[6] S. Masripah, “Komparasi Algoritma Klasifikasi Data Mining untuk Evaluasi Pemberian Kredit,” BINA INSANI ICT JOURNAL, vol. 3, no. 1, pp. 187–193, 2016.
[7] “Jurnal%20Akhir%20Suryani%20Widyarni”.
[8] D. A. Kurniawan and D. Kriestanto, “PENERAPAN NAÏVE BAYES UNTUK PREDIKSI KELAYAKAN KREDIT,” 2016.
[9] J. A. Ginting, “DATA MINING UNTUK ANALISA PENGAJUAN KREDIT DENGAN MENGGUNAKAN METODE LOGISTIK REGRESI,” Jurnal Algoritma, Logika dan Komputasi, vol. 2, no. 2, Nov. 2019, doi: 10.30813/j-alu.v2i2.1845.
[10] D. Wulandari, N. Lutfiyana, H. Sumarno, J. Sistem Informasi, S. Mercusuar Jurusan Sistem Informasi, and S. Nusa Mandiri, “METODE ALGORITMA DECISION TREE C4.5 UNTUK ANALISIS KELAYAKAN KREDIT NASABAH PADA BSM KCP KEMANG PRATAMA,” Jurnal Sains dan Manajemen, vol. 7, no. 2, 2019.
[11] “IMPLEMENTASI METODE AHP PADA SISTEM PENDUKUNG KEPUTUSAN PENYELEKSIANNASABAHPINJAMANKREDIT”.
[12] N. Nuraeni, “Penentuan Kelayakan Kredit Dengan Algoritma Naïve Bayes Classifier: Studi Kasus Bank Mayapada Mitra Usaha Cabang PGC,” 2017.
[13] R. Rachman, R. N. Handayani, and I. Artikel, “Klasifikasi Algoritma Naive Bayes Dalam Memprediksi Tingkat Kelancaran Pembayaran Sewa Teras UMKM,” JURNAL INFORMATIKA, vol. 8, no. 2, 2021, [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/ji
[14] P. Mai et al., “IMPLEMENTASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI DALAM MENENTUKAN PERSEDIAAN BARANG (STUDI KASUS : TOKO SINAR HARAHAP),” 2022. [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index
[15] H. F. Putro, R. T. Vulandari, and W. L. Y. Saptomo, “Penerapan Metode Naive Bayes Untuk Klasifikasi Pelanggan,” Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 8, no. 2, Oct. 2020, doi: 10.30646/tikomsin.v8i2.500.
[16] I. Bagus et al., “Analisis Sentimen Pada Pembelajaran Daring Di Indonesia Melalui Twitter Menggunakan Naïve Bayes Classifier,” vol. 5, no. 2, pp. 227–233, 2022.
[17] “Analisis RapidMiner Dan Weka Dalam Memprediksi Kualitas Kinerja Karyawan Menggunakan Metode Algoritma C4.5”.
Copyright (c) 2024 ZONAsi: Jurnal Sistem Informasi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.