Optimization of Employee Selection Using Hybrid DSS: SAW Approach and Random Forest-Based Attrition Prediction

Authors

  • Dewi Azura Universitas Lancang Kuning
  • Ahmad Zamsuri Universitas Lancang Kuning
  • Susandri Universitas Lancang Kuning

DOI:

https://doi.org/10.31849/80583d54

Keywords:

Sistem Pendukung Keputusan, Random Forest, Simple Additive Weighting, Seleksi Karyawan, Simulasi What-if

Abstract

Pemilihan karyawan merupakan komponen kritis dalam manajemen sumber daya manusia yang memerlukan tingkat objektivitas dan efisiensi yang tinggi. Studi ini mengusulkan sistem pendukung keputusan (DSS) hibrida yang menggabungkan metode Simple Additive Weighting (SAW) untuk evaluasi multi-kriteria dan algoritma Random Forest untuk prediksi risiko turnover. Data set IBM HR Analytics, yang terdiri dari 1.470 catatan karyawan, digunakan sebagai sumber data utama. Kumpulan data tersebut menjalani langkah-langkah prapemrosesan, termasuk pembersihan, pengkodean, dan penyeimbangan kelas menggunakan Teknik Oversampling Minoritas Sintetis (SMOTE). Skor kandidat akhir dihitung berdasarkan nilai yang dinormalisasi di delapan kriteria seleksi, yang diberi bobot sesuai dengan signifikansi logisnya. Simulasi what-if dilakukan untuk menilai sensitivitas sistem terhadap perubahan bobot kriteria. Hasil menunjukkan bahwa pendekatan terintegrasi SAW dan Random Forest menghasilkan rekomendasi kandidat yang lebih objektif dan akurat, dengan akurasi prediksi 83% dan AUC 0,77. Alat visual, seperti diagram radar, kurva ROC, dan matriks kebingungan, meningkatkan keterbacaan dan transparansi keputusan. Studi ini menyajikan pendekatan sistematis dan fleksibel untuk mendukung organisasi dalam mengambil keputusan perekrutan yang didasarkan pada data dan proaktif.

References

[1] M. Anuradha and M. Venkata Rao, “Automated Communication of Emails and Dynamic Attachments through RPA Blue Prism,” 2021. [Online]. Available: www.ijert.org

[2] E. Bisong, “Google Colaboratory,” in Building Machine Learning and Deep Learning Models on Google Cloud Platform, Apress, 2019, pp. 59–64, doi: 10.1007/978-1-4842-4470-8_7.

[3] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.

[4] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, vol. 27, no. 8, pp. 861–874, 2006, doi: 10.1016/j.patrec.2005.10.010.

[5] J. Gao, “Using feature selection and random forest to predict employee attrition,” 2019, [Online]. Available: https://onlinelibrary.wiley.com.

[6] A. Hakim and I. Nudin, “Pengembangan DSS prediksi attrition menggunakan Random Forest pada perusahaan UD. Mas Achiad dengan akurasi 83%,” KDI Journal, vol. 8, no. 1, pp. 1–12, 2024.

[7] A. Karimi and S. Viliyani, “Ensemble learning for turnover prediction,” Philstat Journal, vol. 8, no. 2, pp. 41–49, 2024.

[8] A. Kurniadi, T. Ramadhan, and A. Nurrahman, “Analisis penerapan oversampling pada prediksi turnover karyawan dengan Random Forest,” Unnes Journal of Computer Science, vol. 11, no. 2, pp. 88–96, 2022, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/ujcs/article/view/53472.

[9] G. M. Marakas and J. A. O’Brien, Management Information Systems, 12th ed. New York, NY, USA: McGraw-Hill Education, 2023.

[10] A. Mohiuddin, S. Ahmed, and M. Rahman, “Interpretable machine learning model for attrition prediction using SHAP,” Journal of Artificial Intelligence Research, vol. 7, no. 3, pp. 102–115, 2023, doi: 10.32604/jair.2023.029014.

[11] A. Nugroho, “Penerapan metode SAW untuk seleksi karyawan di CV Cipta Berjaya,” Jurnal Teknologi Informasi, vol. 1, no. 1, pp. 45–51, 2024, doi: 10.31294/mti.v1i1.3780.

[12] S. Opricovic and G. H. Tzeng, “Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS,” European Journal of Operational Research, vol. 156, no. 2, pp. 445–455, 2004, doi: 10.1016/S0377-2217(03)00020-1.

[13] K. Papineni, V. Reddy, and S. Yadav, “A deep analytical framework for employee attrition using machine learning,” Electronics, vol. 10, no. 12, pp. 1453–1465, 2021, doi: 10.3390/electronics10121453.

[14] D. J. Power, Decision Support Systems: Concepts and Resources for Managers. Westport, CT, USA: Greenwood Publishing Group, 2002.

[15] A. Pradilla, K. Fernandes, and J. Sutanto, “Interpreting feature importance in Random Forest models for HR decisions,” HR Analytics Journal, vol. 4, no. 1, pp. 78–89, 2024.

[16] H. Rintang, A. Budiman, and R. Salim, “Peran machine learning dalam meningkatkan retensi melalui pemetaan faktor-faktor kritikal dalam organisasi,” KDI Journal, vol. 7, no. 1, pp. 25–32, 2024.

[17] N. R. Sari and G. Lhaksmana, “Penerapan information gain dalam seleksi fitur untuk prediksi turnover,” in Seminar Nasional Teknologi Informasi dan Komunikasi, vol. 3, no. 1, pp. 21–29, 2022.

[18] G. Sirisha, T. Naresh, and B. Varma, “Comparative study of machine learning algorithms for employee attrition prediction,” International Journal of Computer Applications, vol. 180, no. 25, pp. 7–12, 2022, doi: 10.5120/ijca2022921659.

[19] E. Turban, R. Sharda, and D. Delen, Decision Support and Business Intelligence Systems, 9th ed. Upper Saddle River, NJ, USA: Pearson Education, 2011.

[20] IBM, “IBM HR Analytics Employee Attrition & Performance Dataset,” 2017, [Online]. Available: https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset.

Downloads

Published

2025-12-01

How to Cite

Optimization of Employee Selection Using Hybrid DSS: SAW Approach and Random Forest-Based Attrition Prediction. (2025). SEMASTER: Seminar Nasional Teknologi Informasi & Ilmu Komputer, 4(1), 446-458. https://doi.org/10.31849/80583d54

Most read articles by the same author(s)

1 2 > >>