Pengenalan Kepribadian Melalui Tulisan Tangan Menggunakan Convulutional Neural Network Dengan LS Classifiers

  • Yusa Virginiawan Guntara Universitas Sriwijaya
  • Syamsuryadi Universitas Sriwijaya
  • Sukemi Universitas Sriwijaya
Keywords: Handwriting, CNN, Ls Classifiers, Graphology, Ektrovert & Intovert, Tulisan Tangan

Abstract

A person's handwriting is different and unique, even though it looks similar it is certainly not the same as someone else's writing. One's personality traits can be identified based on handwriting. One of the implementations is (handwriting recognition). To identify a person's personality, it can be classified by handwriting using the 'Graphology' field. The computational system to identify handwritten images can use the Convulution Neural Network method. Using the CNN method is expected to produce good accuracy with a low error rate. The CNN method is able to predict a person's personality through manuscripts as images. In addition, to increase the diversity of classifications, the Least Squared Classifiers method is needed. . LS Classifiers are designed to increase the variety of CNN methods in feature extraction and classification. The LS Classifier method is a classification method that estimates the w parameter vector and takes the best linear classifier based on the w parameter vector. Research has functions for users, including to find out someone's personality, especially extrovert and introvert personality. In this study CNN serves as Feature Extraction to classify Image and Ls Classifiers serves to increase diversity into 2 personality groups. The level of accuracy of the performance of the CNN & Ls Classifiers method in carrying out feature extraction and classification of handwritten images in determining personality has a good level of accuracy.

Downloads

Download data is not yet available.

References

H. Andriani, “Pengenalan Tulisan Tangan pada Lembar Ujian Pilihan Ganda Menggunakan Metode Convolutional Neural Network,” 2019.

K. Chaudhari and A. Thakkar, “Survey on handwriting-based personality trait identification,” Expert Syst. Appl., vol. 124, pp. 282–308, 2019.https://doi.org/10.1016/j.eswa.2019.01.028.

A. A. Elngar, “‘A Deep Learning Based Analysi of the Big Five Personality Traits from Handwritting Sample Using Image Processing.,’” Indones. J. Electr. Eng. Comput. Sci... https://doi.org/10.22059/jitm.2020.78884

F. R. Fatimah, Sri Hastuti, Esmeralda C. Djamal, Ridwan Ilyas, “Personality Features Identification from Handwriting Using Convolutional Neural Networks.,” 4th Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng., pp. 119–24, 2019.

https://doi.org/ 10.1109/ICITISEE48480.2019.9003855

F. Fajri, Distilbert Dalam Mengklasifikasi Tweet Distilbert Dalam Mengklasifikasi Tweet. 2023

Y. Fauzi, Penerapan Metode convolutional Neural Networ Untuk Pengenalan Pola Huruf Arab Melayu. 2019.

S. R. Harahap, “Perbedaan Perilaku Prososial Relawan Ditinjau Dari Tipe Kepribadian Ekstrovert Dan Introvert Pada Organisasi Berkah Langit Medan.,” 2020.

F. Ilham and N. Rochmawati, “Transliterasi Aksara Jawa Tulisan Tangan ke Tulisan Latin Menggunakan CNN,” J. Informatics Comput. Sci., vol. 1, no. 04, pp. 200–208, 2020 https://doi.org/10.26740/jinacs.v1n04.p200-208

S. Khasoggi, Barlian, Ermatita, “Efficient Mobilenet Architecture as Image Recognition on Mobile and Embedded Devices.,” Indones. J. Electr. Eng. Comput. Sci., pp. 389–94., 2019

K. M. Fajar, “Perilaku Pro-Sosial Ditinjau Dari Tipe Kepribadian Introvert Dan Ekstrovert (Studi Pada Mahasiswa Psikologi UNNES).”,” J. Psikol. Ilm., 2019

M. G. Nugrapratama, “Pendeteksi Kepribadian Berdasarkan Pengenalan Tulisan Tangan Menggunakan Support Vector Machine.,” pp. 7–34., 2020.

A. R. Pathak, A. Raut, S. Pawar, M. Nangare, H. S. Abbott, and P. Chandak, “Personality analysis through handwriting recognition,” J. Discret. Math. Sci. Cryptogr., vol. 23, no. 1, pp. 19–33, 2020, 10.1080/09720529.2020.1721856.

D. Purwadi, “Pengenalan Tipe Karakter Seseorang Berdasarkan Pola Tulisan Huruf ‘T’ Menggunakan Jaringan Syaraf Tiruan Metode Learning Vector Quantization 2.1.,” J. Chem. Inf. Model., vol. 53, no. 9, p. 2019.

A. R. S. Qudsi, Nahila Khunafa, Rosa Andrie Asmara, “Identifikasi Citra Tulisan Tangan Digital Menggunakan Convolutional Neural Network (CNN).,” Semin. Inform. Apl. Polinema, pp. 48–53., 2020.

I. Ramadhan, “Implementasi Smooth Support Vector Machine (Ssvm) Dan Diagonal Based Feature Extraction (Dbfe) Dalam Sistem Pendeteksi Kepribadian Berdasarkan Tulisan Tangan.,” 2021.

R. Rusbianto and I. Susilawati, “Identifikasi Citra Tulisan Tangan untuk Menentukan Karakter Kepribadian Introvert atau Extrovert dengan Metode LS Classifier,” JMAI (Jurnal Multimed. Artif. Intell., vol. 3, no. 1, pp. 17–22, 2019, doi: 10.26486/jmai.v3i1.85. https://doi.org/10.26486/jmai.v3i1.85

R. Swiking Arahman, “Penerapan Metode Convolutional Neural Network (Cnn) Untuk Pengenalan Pola Aksara Batak.,” 2019.

S. Thomas, M. Goel, and D. Agrawal, “A framework for analyzing financial behavior using machine learning classification of personality through handwriting analysis,” J. Behav. Exp. Financ., vol. 26, p. 100315, 2020, doi: 10.1016/j.jbef.2020.100315. https://doi.org/10.1016/j.jbef.2020.100315

E. M. F.-R. Hiram Calvo, “Handwritten Texts for Personality Identification Using Convolutional Neural Networks.”,” pp. 140–45., 2019.

J. Wong, “Aplikasi Klasifikasi Sampah Organik dan Non Organik dengan Metode GLCM Dan LS-SVM,” Bull. Comput. Sci. Res., vol. 3, no. 1, pp. 83–89, 2022. https://doi.org/10.47065/bulletincsr.v3i1.198

Published
2023-11-16
How to Cite
Guntara, Y. V., Syamsuryadi, & Sukemi. (2023). Pengenalan Kepribadian Melalui Tulisan Tangan Menggunakan Convulutional Neural Network Dengan LS Classifiers. Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 14(2), 151-167. https://doi.org/10.31849/digitalzone.v14i2.15193
Abstract viewed = 57 times
PDF downloaded = 30 times