Pemodelan Spasial untuk Analisa Produksi Padi Integrasi Machine Learning

  • Desy Ika Puspitasari Desy Universitas Islam Kalimantan (UNISKA) Muhammad Arsyad Al Banjari (MAB) Banjarmasin
  • Al Fath Riza Kholdani Universitas Islam Kalimantan
  • Tri Wahyu Qur’ana Universitas Islam Kalimantan
  • Adani Dharmawati Universitas Islam Kalimantan
Keywords: Pemodelan spasial, Prediksi produksi padi, Sistem Informasi Geografi, Machine learning, Linear regression, Rice production prediction, Geographic Information System

Abstract

 The growing human population has sparked interest in accurate rice production prediction. This research combines Geographic Information Systems and machine learning to model rice paddy production prediction with minimal error. Using linear regression, this research analyzes rice paddy production in 13 districts/cities in South Kalimantan with spatial and historical data as features, and rice paddy production as the target variable. Experimental results show that this approach produces accurate predictions, with the Linear Regression Algorithm having a consistent level of accuracy and R2 of 0.992, explaining that 99.2% of the variation in the response variable can be explained by the predictor variable, and 0.8% is influenced by other factors. While Hulu Sungai Utara district has the highest rice production and Barito Kuala district has the lowest. This study makes an important contribution in spatial modeling for rice paddy production prediction, helping agricultural experts and decision makers identify rice paddy production potential and improve the accuracy of rice paddy production prediction.

Downloads

Download data is not yet available.

References

Badan Pusat Statistik (BPS), “Provinsi Kalimantan Selatan Dalam Angka 2022,” Kalimantan Selatan, 2022. Accessed: Nov. 27, 2022. [Online]. Available: kalsel.bps.go.id

K. Kopczewska, “Spatial machine learning: new opportunities for regional science,” Annals of Regional Science, vol. 68, no. 3, pp. 713–755, Jun. 2022, http://dx.doi.org/ 10.1007/s00168-021-01101-x.

A. Karim, D. S. Sarra, R. Wasono, T. W. Utami, and Toheri, “Spatial modelling for rice production analysis in Central Java province Indonesia,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Jun. 2019. http://dx.doi.org/10.1088/1742-6596/1217/1/012113.

Y. Casali, N. Y. Aydin, and T. Comes, “Machine learning for spatial analyses in urban areas: a scoping review,” Sustainable Cities and Society, vol. 85. Elsevier Ltd, Oct. 01, 2022. http://dx.doi.org/10.1016/j.scs.2022.104050.

A. Toomanian, A. A. Kakroodi, and M. A. Etemadi, “Spatial Modeling of Land Subsidence Using GIS-based Machine Learning Algorithms,” SSRN Electronic Journal Elsevier BV, 2022.

B. Liang et al., “Analysing and simulating spatial patterns of crop yield in Guizhou Province based on artificial neural networks,” Prog Phys Geogr, vol. 45, no. 1, pp. 33–52, Feb. 2021, http://dx.doi.org/10.1177/0309133320956631.

A. Wilson, R. Sukumar, and N. Hemalatha, “Machine Learning Model for Rice Yield Prediction Using KNN Regression.” agriRxiv, 2021. http://dx.doi.org/10.31220/agrirxiv.2021.00070.

W. Tb Panjaitan, E. Utami, and H. Al Fatta, “Prediksi Panen Padi Menggunakan Algoritma K-Nearest Neigbour,” in Prosiding SNATIF ke-5 Tahun 2018, Fakultas Teknik - Universitas Muria Kudus, 2018, pp. 621–628. [Online]. Available: https://yogyakarta.bps.go.id.

S. Maesaroh, “Sistem Prediksi Produktifitas Pertanian Padi Menggunakan Data Mining,” vol. 7, no. 2, 2017.

G. Ramadhona, B. Darma Setiawan, and F. A. Bachtiar, “Prediksi Produktivitas Padi Menggunakan Jaringan Syaraf Tiruan Backpropagation,” 2018. [Online]. Available: http://j-ptiik.ub.ac.id

H. W. Herwanto, T. Widiyaningtyas, and P. Indriana, “Penerapan Algoritme Linear Regression untuk Prediksi Hasil Panen Tanaman Padi,” JNTETI, vol. 8, no. 4, 2019.

H. Putra and N. Ulfa Walmi, “Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 6, no. 2, pp. 100–107, Sep. 2020, http://dx.doi.org/10.25077/teknosi.v6i2.2020.100-107.

A. Raka Masdian, N. Bashit, and F. Hadi, “Analisis Produktivitas Padi Menggunakan Algoritma Machine Learning Random Forest di Kabupaten Batang Tahun 2018-2022,” 2023.

D. Maulud and A. M. Abdulazeez, “A Review on Linear Regression Comprehensive in Machine Learning,” Journal of Applied Science and Technology Trends, vol. 1, no. 4, pp. 140–147, Dec. 2020, http://dx.doi.org/10.38094/jastt1457.

M. Alkaff, H. Khatimi, W. Puspita, and Y. Sari, “Modelling and predicting wetland rice production using support vector regression,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 17, no. 2, pp. 819–825, 2019, http://dx.doi.org/10.12928/TELKOMNIKA.V17I2.10145.

T. W. Utami, I. Manfaati Nur, and E. Suryaningsih, “Pemodelan Produksi Padi Menggunakan Regresi Semiparametrik Kernel,” Jurnal Statistika, vol. 6, no. 2, pp. 160–165, Nov. 2018, [Online]. https://doi.org/10.26714/jsunimus.6.2.2018.%25p

Published
2023-11-16
How to Cite
Desy, D. I. P., Riza Kholdani, A. F., Tri Wahyu Qur’ana, & Dharmawati, A. (2023). Pemodelan Spasial untuk Analisa Produksi Padi Integrasi Machine Learning. Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 14(2), 128-137. https://doi.org/10.31849/digitalzone.v14i2.16256
Abstract viewed = 58 times
PDF downloaded = 67 times