Constellation of Football Players Determination Based on Cost and Performance History Using the K-Means Clustering
Abstract
Determining the constellation of football players determines a team's success when competing on the field. Disassembling players is an option that must be made considering performance history and costs. This research experiments with K-Means to automate the search for groups of players based on performance and price history. Grouping can achieve a constellation of players with high-performance characteristics but at an affordable price. The dataset used in this research is 580 football players for the 2022/2023 season from Sofifa, Fbref, and SofaScore. The data is divided into four player positions: goalkeeper, defender, midfielder, and attacker. Data for each position is grouped into 3 clusters. Each cluster is analyzed to obtain dominant performance indicator values and determine the characteristics of the cluster. Experimental results using K-Means show that cluster 1 is a team with medium player prices but low performance. Cluster 2 has the cheapest price but with the best performance. Meanwhile, cluster 3 is the most expensive but performs similarly to cluster 2.
Downloads
References
C. Rominger et al., “Female and male soccer players recruited different cognitive processes when generating creative soccer moves,” Psychology of Sport and Exercise, vol. 50, p. 101748, Sep. 2020, https://doi.org/10.1016/J.PSYCHSPORT.2020.101748.
E. Vallance, N. Sutton-Charani, P. Guyot, and S. Perrey, “Predictive modeling of the ratings of perceived exertion during training and competition in professional soccer players,” Journal of Science and Medicine in Sport, vol. 26, no. 6, pp. 322–327, Jun. 2023, https://doi.org/10.1016/J.JSAMS.2023.05.001.
I. Coker, S. T. Cotterill, and J. Griffin, “Player perceptions of athlete leadership and leadership development in an English Premier League football academy,” Asian Journal of Sport and Exercise Psychology, vol. 2, no. 3, pp. 182–189, Dec. 2022, https://doi.org/ 10.1016/J.AJSEP.2021.12.001.
C. Bonello et al., “The association between hip/groin pain and hip strength in football players: An exploratory analysis of the FORCe cohort,” Journal of Science and Medicine in Sport, Jul. 2023, https://doi.org/10.1016/J.JSAMS.2023.07.008.
E. A. Roughead et al., “Football players with long standing hip and groin pain display deficits in functional task performance,” Physical Therapy in Sport, vol. 55, pp. 46–54, May 2022, https://doi.org/10.1016/J.PTSP.2022.02.023.
L. Skoufa, G. Daroglou, A. Loukovitis, H. Lunde, G. Guižauskaitė, and V. Barkoukis, “Football players’ preferences for anti-doping education: A cross-country study,” Performance Enhancement & Health, vol. 10, no. 1, p. 100217, Feb. 2022, https://doi.org/ 10.1016/J.PEH.2021.100217.
J. B. Farley, J. W. L. Keogh, C. T. Woods, and N. Milne, “Injury profiles of Australian football players across five, women’s and girls’ competition levels,” Journal of Science and Medicine in Sport, vol. 25, no. 1, pp. 58–63, Jan. 2022, https://doi.org/10.1016/J.JSAMS.2021.08.016.
T. Ito, M. D. Fetters, C. Kipps, and B. Kumar, “Depressive symptoms among male professional soccer players in Japan,” Asian Journal of Sport and Exercise Psychology, Mar. 2023, https://doi.org/10.1016/J.AJSEP.2023.02.002.
M. A. Hammami et al., “The effects of a soccer season on anthropometric characteristics, physical fitness, and soccer skills in North African elite female youth soccer players,” Science & Sports, vol. 38, no. 4, pp. 401–410, Jun. 2023, https://doi.org/ 10.1016/J.SCISPO.2022.08.002.
F. J. Robles-Palazón et al., “Predicting injury risk using machine learning in male youth soccer players,” Chaos, Solitons & Fractals, vol. 167, p. 113079, Feb. 2023, https://doi.org/10.1016/J.CHAOS.2022.113079.
A. Cao et al., “MIG-Viewer: Visual analytics of soccer player migration,” Visual Informatics, vol. 5, no. 3, pp. 102–113, Sep. 2021, https://doi.org/10.1016/J.VISINF.2021.09.002.
A. Beheshtian-Ardakani, M. Salehi, and R. Sharma, “CMPN: Modeling and analysis of soccer teams using Complex Multiplex Passing Network,” Chaos, Solitons & Fractals, vol. 174, p. 113778, Sep. 2023, https://doi.org/10.1016/J.CHAOS.2023.113778.
P. Schons et al., “Effects of cold water immersion on the physical performance of soccer players: A systematic review,” Science & Sports, vol. 37, no. 3, pp. 159–166, May 2022, https://doi.org/10.1016/J.SCISPO.2021.03.008.
H. P. K. Negara, E. Santoso, and H. Nurwasito, “Sistem Pendukung Keputusan Menentukan Transfer Pemain Sepak Bola Menggunakan Metode AHP ( Analytical Hierarchy Process ),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, vol. 2, no. 7, pp. 2670–2678, 2018.
N. W. Wisswani, T. R. Tulili, M. F. Andrijasa, M. R. Satria, E. Wahyudi, and S. Jumaini, “Klasifikasi Tipe Gelandang Sepak Bola Berdasarkan Data Kemampuan Menggunakan Metode Naive Bayes,” Just TI (Jurnal Sains Terapan Teknologi Informasi), vol. 12, no. 2, pp. 46–50, Jul. 2020, https://doi.org/10.46964/JUSTTI.V12I2.370.
M. A. Akbar, F. Fatimah, and J. Jaenudin, “Penerapan Data Mining Untuk Pengelompokan Posisi Pemain Sepak Bola Menggunakan Algoritma K-Means Clustering,” Semnati, vol. x, No.x, no. x, pp. 278–282, 2019.
S. Dewi, S. Defit, and Y. Yuhandri, “Akurasi Pemetaan Kelompok Belajar Siswa Menuju Prestasi Menggunakan Metode K-Means,” Jurnal Sistim Informasi dan Teknologi, vol. 3, pp. 28–33, 2021, https://doi.org/10.37034/jsisfotek.v3i1.40.
D. Siburian, S. R. Andani, and I. P. Sari, “Implementasi Algoritma K-Means untuk Pengelompokkan Peminjaman Buku Pada Perpustakaan Sekolah Implementation of K-Means Algorithm for Clustering Books Borrowing in School Libraries,” JOMLAI: Journal of Machine Learning and Artificial Intelligence, vol. 1, no. 2, 2022, https://doi.org/10.55123/jomlai.v1i2.725.
Feryanto, F. T. Kesuma, and S. P. Tamba, “Penerapan Data Mining Untuk Menentukan Penjualan Sparepart Toyota Dengan Metode K-Means Clustering,” Jurnal Sistem Informasi dan Ilmu Komputer Prima(JUSIKOM PRIMA), vol. 2, no. 2, pp. 67–72, 2019, https://doi.org/10.37034/jsisfotek.v3i1.40.
R. Rosmini, A. Fadlil, and S. Sunardi, “Implementasi Metode K-Means Dalam Pemetaan Kelompok Mahasiswa Melalui Data Aktivitas Kuliah,” It Journal Research and Development, vol. 3, no. 1, pp. 22–31, 2018, https://doi.org/10.25299/itjrd.2018.vol3(1).1773.
M. Dahria, R. Gunawan, and Z. Lubis, “Implementasi K-Means Untuk Pengelompokan Produk Terbaik PT . Koko Pelli,” Seminar Nasional Sains & Teknologi Informasi (SENSASI), pp. 495–498, 2019.
A. E. Rahayu, K. Hikmah, N. Yustia, and A. C. Fauzan, “Penerapan K-Means Clustering Untuk Penentuan Klasterisasi Beasiswa Bidikmisi Mahasiswa,” ILKOMNIKA: Journal of Computer Science and Applied Informatics, vol. 1, no. 2, pp. 82–86, 2019, https://doi.org/10.28926/ilkomnika.v1i2.23.
S. F. Mandang and B. N. Sari, “Penerapan K-Means Cluster Pada Daerah Penggunaan Teknologi di Indonesia,” JOINS (Journal of Information System), vol. 6, no. 1, pp. 131–138, 2021, https://doi.org/10.33633/joins.v6i1.4545.
P. Ulil, F. Aulia, and S. Saepudin, “Penerapan Data Mining K-Means Clustering Untuk Mengelompokkan Berbagai Jenis Merk Laptop,” SISMATIK (Seminar Nasional Sistem Informasi dan Manajemen Informatika), pp. 241–249, 2021.
T. I. Zohdi, “Machine-learning a perfect bending soccer goal shot,” Computer Methods in Applied Mechanics and Engineering, vol. 415, p. 116261, Oct. 2023, https://doi.org/10.1016/J.CMA.2023.116261.
M. Hughes et al., “Moneyball and soccer - An analysis of the key performance indicators of elite male soccer players by position,” Journal of Human Sport and Exercise, vol. 7, no. SPECIALISSUE.2, pp. 402–412, 2012, https://doi.org/10.4100/jhse.2012.72.06.
K. T. Kristianto, “Istilah-istilah dalam Sepak Bola,” Kompas.com, 2021. .
K. T. Kristianto, “Istilah-istilah Sepak Bola saat Duel Maupun Bertahan,” Kompas.com, 2021. .
A. Istiqomah, “Istilah-Istilah dalam Transfer Pemain Sepak Bola yang Sering Digunakan,” sportstars.id, 2023. .
W. Pulungan, P. Poningsih, and H. Satria, “Pengelompokkan Pada Kendaraan Bermotor Menurut Kegunaannya Menggunakan Metode Data Mining K-Means,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 3, no. 1, pp. 746–752, 2019, https://doi.org/10.30865/komik.v3i1.1687.
A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,” Jurnal Tekno Kompak, vol. 15, no. 2, p. 25, 2021, https://doi.org/10.33365/jtk.v15i2.1162.
F. Indriyani and E. Irfiani, “Clustering Data Penjualan pada Toko Perlengkapan Outdoor Menggunakan Metode K-Means,” JUITA : Jurnal Informatika, vol. 7, no. 2, p. 109, 2019, https://doi.org/10.30595/juita.v7i2.5529.
Copyright (c) 2023 Digital Zone: Jurnal Teknologi Informasi dan Komunikasi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.