Otomasi sistem kelistrikan menggunakan algoritma a-star berbasis internet of things
Abstract
Meluasnya penerapan mikrokontroler dalam kehidupan kita sehari-hari mendorong penerapan yang lebih dalam, seperti mesin cuci piring pintar, kendali kendaraan pintar, serta perangkat rumah pintar yang merupakan ide-ide menarik untuk diterapkan. Aktivitas perkuliahan yang berlangsung dari pagi hingga malam hari mengindikasikan intensitas penggunaan energi listrik yang tinggi. Hal ini dikarenakan pembagian jadwal perkuliahan yang ada, didapatkan rata-rata kejadian kondisi perangkat kelistrikan ditinggalkan dalam kondisi hidup setelah perkuliahan selesai adalah 6-10 ruangan per hari per lokasi antara kampus 1 dan kampus 2. Tingginya tingkat pemborosan energi oleh ruangan yang ditinggalkan dalam kondisi perangkat listrik yang tetap hidup setelah aktivitas perkuliahan selesai, mendorong penerapan penggunaan algoritme heuristik sebagai kerangka kerja sistem pengendalian perangkat listrik otomatis. Sistem ini akan membantu penghematan biaya penggunaan energi listrik. Didukung oleh algoritme heuristik A-star, penerapan mikrokontroler Raspberry Pi 3 sebagai sistem kontrol utama sistem otomasi kelistrikan rumah/bangunan memberikan solusi penghematan konsumsi dan efektivitas penggunaan listrik.
Kata kunci: mikrokontroler, algoritme heuristik, internet of things, efektivitas dan penghematan listrik
Abstract
The widespread application of microcontrollers in our daily lives is a deeper application, such as smart dishwashers, smart vehicle access, and smart home devices which are interesting ideas to implement. Lecture activities that take place from morning to night indicate the high intensity of electrical energy usage. This is due to the distribution of the existing lecture schedule. It is found that the average incidence of electrical equipment left in living conditions after the lecture is complete is 6-10 rooms per day per location between campus 1 and campus 2. The high level of waste of energy by the room left in the condition electrical devices that remain alive after lecture activities are completed, encouraging the application of the use of heuristic algorithms as a framework for automated electrical appliance control systems. This system will help save the cost of using electricity. Supported by the A-star heuristic algorithm, the application of the Raspberry Pi 3 microcontroller as the main control system of home / building electrical automation systems provides solutions of saving consumption and the effectiveness of electricity usage.
Keywords: microcontroller, heuristic algorithm, effectiveness and saving electricity
Downloads
References
[2] C. Leech, Y. P. Raykov, E. Ozer, and G. V. Merrett, “Real-time room occupancy estimation with Bayesian machine learning using a single PIR sensor and microcontroller,” in SAS 2017 - 2017 IEEE Sensors Applications Symposium, Proceedings, 2017.
[3] C. Twumasi, K. A. Dotche, W. Banuenumah, and F. Sekyere, “Energy saving system using a PIR sensor for classroom monitoring,” in Proceedings - 2017 IEEE PES-IAS PowerAfrica Conference: Harnessing Energy, Information and Communications Technology (ICT) for Affordable Electrification of Africa, PowerAfrica 2017, 2017.
[4] S. Lee, G. Tewolde, and J. Kwon, “Design and implementation of vehicle tracking system using GPS/GSM/GPRS technology and smartphone application,” in 2014 IEEE World Forum on Internet of Things, WF-IoT 2014, 2014.
[5] N. L. Ramli, N. Mohd Yamin, S. Ab Ghani, N. M. Saad, and S. A. Md Sharif, “Implementation of passive infrared sensor in street lighting automation system,” ARPN J. Eng. Appl. Sci., 2015.
[6] A. L. System, “PIR motion sensor,” US Pat. 7,579,595, 2009.
[7] V. Vujovic, M. Maksimović, V. Vujović, N. Davidović, V. Milošević, and B. Perišić, “Raspberry Pi as Internet of Things hardware : Performances and Constraints Raspberry Pi as Internet of Things hardware : Performances and Constraints,” Des. Issues, 2014.
[8] A. Bradbury and B. Everard, “Learning Python with Raspberry Pi,” Electronics, 2014.
[9] R. C. Mason, “Fundamental relay-operating principles and characteristics,” Art Sci. Prot. Relaying, 2015.
[10] L. H. S. Lelis, R. Stern, A. Felner, S. Zilles, and R. C. Holte, “Predicting optimal solution cost with conditional probabilities: Predicting optimal solution cost,” Ann. Math. Artif. Intell., 2014.