Modelling the Hatching Success of Sea Turtle Eggs Using Long Short-Term Memory (LSTM) for Conservation Oriented Ecotourism

Authors

  • Agustriono Agustriono Universitas Sains dan Teknologi Indonesia
  • Susanti Susanti Universitas Sains dan Teknologi Indonesia
  • Lusiana Lusiana Universitas Sains dan Teknologi Indonesia
  • Mardainis Mardainis Universitas Sains dan Teknologi Indonesia
  • Rahmat Irfansyah Loka Kawasan Konservasi Perairan Nasional Pekanbaru

DOI:

https://doi.org/10.31849/digitalzone.v16i2.28856

Keywords:

LSTM, MAE, RMSE, Conservation, Sea Turtle, Ecoturism, Mangkai, Anambas

Abstract

This study proposes a Long Short-Term Memory (LSTM) model to predict the hatching success of sea turtle eggs in the Anambas Islands Marine Conservation Area, Indonesia. Leveraging nesting data (2022–2024) provided by LKKPN Pekanbaru and associated environmental variables, the model’s performance was assessed across various configurations of time steps (2, 5, 7, 30, and 45 days) and data splits (ranging from 60:40 to 90:10). The optimal configuration—7-day time step with a 60:40 train-test split—yielded RMSE = 17.90, MAE = 8.67, and R² = 0.34. Results revealed strong seasonal nesting trends and statistically significant interspecies differences in incubation periods (p < 0.05). While the model demonstrated high predictive accuracy for standard incubation durations (30–45 days), performance declined in extreme cases, highlighting the need for location-specific environmental data. This research illustrates the practical application of LSTM for ecological time series forecasting and provides a machine learning framework to support decision-making in ecotourism scheduling and marine conservation planning in island-based coastal ecosystems

References

[1] L. P. LKKPN Pekanbaru, “Monitoring Penyu di Kawasan Kosnervasi Kepulauan Anambas Tahun 2024, [Internal report]. Available: LKKPN Pekanbaru.

[2] T. Z. A. E. Hamino, I. N. Y. Parawangsa, L. A. Sari, and S. Arsad, “Efektifitas Pengelolaan Konservasi Penyu di Education Center Serangan , Denpasar Bali,” J. Mar. Coast. Sci. Vol., vol. 10, no. 1, pp. 18–34, 2021, [Online]. Available: https://e-journal.unair.ac.id/JMCS/article/download/25604/13512

[3] R. R. K. Sinaga, A. Hanif, F. Kurniawan, S. Roni, D. Y. W. Laia, and J. R. Hidayati, “Tingkat Keberhasilan Penetasan Telur Penyu Hijau (Chelonia mydas) dan Penyu Sisik (Eretmochelys imbricata) Di Pulau Mangkai Kepulauan Anambas,” J. Mar. Res., vol. 13, no. 1, pp. 92–99, 2024,https://doi.rg/10.14710/jmr.v13i1.38531.

[4] A. Hanif, H. Damanhuri, S. Suparno, and M. U. Rusli, “Tingkat Penetasan Penyu Hijau di Pulau Pandan Kawasan Konservasi Pulau Pieh, Sumatera Barat,” J. Akuatiklestari, vol. 6, no. 1, pp. 1–9, 2022, https://doi.org/10.31629/akuatiklestari.v6i1.4696

[5] Ikha Safitri, “Monitoring Penyu sebagai Upaya dalam Pengelolaan KKP3K Paloh Kalimantan Barat,” JurnalPengabdian Kpd. Masy. Nusant., vol. 5, no. 1, p. 120, 2024.

[6] A. Agustriono, S. Rapindra, and R. Rahmaddeni, “Komparasi Multiple Linear Regression dan Decision Tree dalam Memprediksi Penetasan Penyu Jenis Chelonioidea Sp di Pulau Mangkai,” vol. 14, no. 1, pp. 9–17, 2024. https://ejurnal.umri.ac.id/index.php/JIK/article/view/6844

[7] L. P. LKKPN Pekanbaru, “Laporan Monitoring Penyu Kawasan Konservasi Pieh dan Kawasan Konservasi Anambas Tahun 2022,” 2022. [Internal report]. Available LKKPN Pekanbaru.

[8] L. P. LKKPN Pekanbaru, Laporan Monitoring Penyu 2024. 2024. [Internal report]. Available: LKKPN Pekanbaru.

[9] L. P. LKKPN Pekanbaru, “Laporan Monitoring Penyu Kawasan Konservasi Anambas Tahun 2023,” 2023. [Internal report]. Available: LKKPN Pekanbaru.

[10] R. C. Edwards, B. J. Godley, and A. Nuno, “Exploring connections among the multiple outputs and outcomes emerging from 25 years of sea turtle conservation in Northern Cyprus,” J. Nat. Conserv., vol. 55, no. December 2019, p. 125816, 2020, htts://doi.org/10.1016/j.jnc.2020.125816.

[11] L. P. LKKPN Pekanbaru, Laporan Kinerja Tahunan 2024 LKKPN Pekanbaru, vol. 11, no. 1. 2024.

[12] A. Khumaidi, R. Raafi’udin, and I. P. Solihin, “Pengujian Algoritma Long Short Term Memory untuk Prediksi Kualitas Udara dan Suhu Kota Bandung,” J. Telemat., vol. 15, no. 1, pp. 13–18, 2020, https://doi.org/10.61769/telematika.v15i1.340

[13] N. Yudistrira et al., Prediksi deret waktu menggunakan Deep Learning, I. Indonesia: UB Pres, 2023. [Online]. Available: https://ubpress.ub.ac.id/?p=4433

[14] Departemen Kelautan dan Perikanan, Pedoman Teknis Pengelolaan Konservasi Penyu. 2009, 2009. https://perpustakaan.kkp.go.id/knowledgerepository/index.php?p=show_detail&id=13252

[15] M. Alazab, S. Khan, S. S. R. Krishnan, Q. V. Pham, M. P. K. Reddy, and T. R. Gadekallu, “A Multidirectional LSTM Model for Predicting the Stability of a Smart Grid,” IEEE Access, vol. 8, pp. 85454–85463, 2020, https://doi.org/10.1109/ACCESS.2020.2991067.

[16] A. Muneer, R. F. Ali, A. Almaghthawi, S. M. Taib, A. Alghamdi, and E. A. A. Ghaleb, “Short term residential load forecasting using long short-term memory recurrent neural network,” Int. J. Electr. Comput. Eng., vol. 12, no. 5, pp. 5589–5599, 2022, http://doi.org/10.11591/ijece.v12i5.pp5589-5599

[17] S. Siami-Namini, N. Tavakoli, and A. Siami Namin, “A Comparison of ARIMA and LSTM in Forecasting Time Series,” Proc. - 17th IEEE Int. Conf. Mach. Learn. Appl. ICMLA 2018, pp. 1394–1401, 2018, doi: 10.1109/ICMLA.2018.00227.

[18] J. Wen, J. Yang, B. Jiang, H. Song, and H. Wang, “Big Data Driven Marine Environment Information Forecasting: A Time Series Prediction Network,” IEEE Trans. Fuzzy Syst., vol. 29, no. 1, pp. 4–18, 2021, https://doi.org/10.1109/TFUZZ.2020.3012393.

[19] Y. Rifa’i, “Analisis Metodologi Pengumpulan Data di Penelitian Ilmiah,” Cendekia Inov. Dan Berbudaya, vol. 1, no. 1, pp. 31–37, 2023. https://doi.org/10.59996/cendib.v1i1.155

[20] T. O. Hodson, “Root-mean-square error ( RMSE ) or mean absolute error ( MAE ): when to use them or not,” no. 2, pp. 5481–5487, 2022. https://doi.org/10.5194/gmd-15-5481-2022

[21] Y. P. Chen et al., “Real-time decision-making for Digital Twin in additive manufacturing with Model Predictive Control using time-series deep neural networks,” J. Manuf. Syst., vol. 80, no. March, pp. 412–424, 2025, https://doi.org/10.1016/j.jmsy.2025.03.009.

[22] Z. M. Shaikh and S. Ramadass, “Unveiling deep learning powers: LSTM, BiLSTM, GRU, BiGRU, RNN comparison,” Indones. J. Electr. Eng. Comput. Sci., vol. 35, no. 1, pp. 263–273, 2024, https://doi.org/10.11591/ijeecs.v35.i1.pp263-273.

[23] D. W. A. R. F. E. P. A. Satyanarayan and A, “Charting EDA: Characterizing Interactive Visualization Use in Computational Notebooks with a Mixed-Methods Formalism,” IEEE Trans. Vis. Comput. Graph., vol. 31, pp. 1191–1201, 2025, https://doi.org/10.1109/TVCG.2024.3456217.

[24] A. Wibowo, “Analisa Dan Visualisasi Data Penjualan Menggunakan Exploratory Data Analysis Pada PT. Telkominfra,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 3, pp. 2292–2304, 2022, https://jurnal.mdp.ac.id/index.php/jatisi/article/view/2737

[25] Ceballos, Scikit-Learn Decision Trees Explained. 2019. [Online]. Available: https://towardsdatascience.com/scikit-learn-decision-trees-explained-803f3812290d

[26] K. Rani Das, “A Brief Review of Tests for Normality,” Am. J. Theor. Appl. Stat., vol. 5, no. 1, p. 5, 2016, https://doi.org/10.11648/j.ajtas.20160501.12.

[27] P. Mishra, C. M. Pandey, U. Singh, A. Gupta, C. Sahu, and A. Keshri, “Descriptive statistics and normality tests for statistical data,” Ann. Card. Anaesth., vol. 22, no. 1, pp. 67–72, 2019, https://doi.org/10.4103/aca.ACA_157_18.

[28] M. Aslam and M. Sattam Aldosari, “Analyzing alloy melting points data using a new Mann-Whitney test under indeterminacy,” J. King Saud Univ. - Sci., vol. 32, no. 6, pp. 2831–2834, 2020, doi: 10.1016/j.jksus.2020.07.005.

[29] H. Abbasimehr, M. Shabani, and M. Yousefi, “An optimized model using LSTM network for demand forecasting,” Comput. Ind. Eng., vol. 143, no. July 2019, p. 106435, 2020, https://doi.org/ 10.1016/j.cie.2020.106435.

[30] K. Bandara, C. Bergmeir, and S. Smyl, “Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach,” Expert Syst. Appl., vol. 140, 2020, https://doi.org/10.1016/j.eswa.2019.112896.

[31] F. A. Gers and F. Cummins, “A critique of neoclassical macroeconomics,” Choice Rev. Online, vol. 27, no. 09, pp. 27-5238-27–5238, 1990, https://doi.org/10.5860/choice.27-5238

[32] Sheavtiyan, T. R. Setyawati, and I. Lovadi, “Tingkat Keberhasilan Penetasan Telur Penyu Hijau (Chelonia Mydas, Linnaeus 1758) di Pantai Sebubus, Kabupaten Sambas,” J. Protobiont, vol. 3, no. 1, pp. 46–54, 2014. https://doi.org/10.26418/protobiont.v3i1.4581

Downloads

Published

2025-10-30

How to Cite

Modelling the Hatching Success of Sea Turtle Eggs Using Long Short-Term Memory (LSTM) for Conservation Oriented Ecotourism. (2025). Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 16(2), 135-149. https://doi.org/10.31849/digitalzone.v16i2.28856

Most read articles by the same author(s)