AUGMENTASI DATA PADA IMPLEMENTASI CONVOLUTIONAL NEURAL NETWORK ARSITEKTUR EFFICIENTNET-B3 UNTUK KLASIFIKASI PENYAKIT DAUN PADI
DOI:
https://doi.org/10.31849/zn.v5i2.13874Keywords:
Augmentasi data, Comvolutation Neural Network, Deep learning, Efficientnet-B3, Penyakit daun padiAbstract
Padi adalah salah satu jenis biji-bijian dengan urutan ketiga sebagai bahan pokok makanan setelah gandum dan jagung. Jenis penyakit yang menyerang daun tanaman terdiri atas blast, brownspot, leaf smut. Pada penelitian ini metode Convolutional Neural Network dengan Arsitektur Efficientnet-B3 digunakan untuk mengklasifikasikan penyakit daun pada tanaman padi. Tujuan penelitian ini membandingkan tingkat akurasi menggunakan data tanpa augmentasi (asli) dan data yang telah di augmentasi. Augmentasi data yang digunakan brightness, rotation, dan vertical_flip. Selain itu dilakukan juga pengujian menggunakan optimizer yang berbeda yaitu optimizer RMSprop dan optimizer SGD (Stochastic Gradient Descent). Pengujian dilakukan dengan tiga model perbandingan data yaitu 90:10, 80;20 dan 70:30. Hasil pengujian memperlihatkan akurasi tertinggi menggunakan data asli pada rasio 70:30 yaitu sebesar 92.39% dengan optimizer RMSprop. Sedangkan untuk akurasi tertinggi menggunakan data augmentasi terdapat pada rasio 90:10 yaitu sebesar 98.91% dengan optimizer RMSprop.
Downloads
Published
Issue
Section
License
CC BY-SA 4.0
Attribution-ShareAlike 4.0
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
