ANALISIS SENTIMEN ULASAN MIE GACOAN SOLO VETERAN DI GOOGLE MAPS MENGGUNAKAN ALGORITMA NAIVE BAYES
DOI:
https://doi.org/10.31849/zn.v6i3.21194Keywords:
Analisis Sentimen, TF-IDF, SMOTE, Mie GacoanAbstract
Mie Gacoan Solo Veteran is one of the fastfood restaurant branches that is very popular with various groups, so that quite a few people have left an assessment of it. This research aims to help the Mie Gacoan Solo Veteran company in its efforts to understand consumer responses to their trademark and how people assess the products presented based on opinions and reviews on the Google Maps platform. Data was collected through a crawling process, then labeled and preprocessed before being extracted using the Term Frequency-Inverse Document Frequency (TF-IDF) technique and modeled with the Naive Bayes algorithm. The test results show that on unbalanced data, the model obtains an accuracy of 86%. However, after addressing data imbalance through an oversampling method using Synthetic Minority Over-sampling Technique (SMOTE), the model accuracy increased to 91%.
References
[2] G. A. Prasasti and P. Maisara, “PENGARUH FASILITAS, HARGA DAN CITA RASA TERHADAP KEPUASAN KONSUMEN MIE GACOAN DI SOLO RAYA,” Publik: Jurnal Manajemen Sumber Daya Manusia, Administrasi dan Pelayanan Publik, vol. 9, no. 2, pp. 276–288, May 2022, doi: 10.37606/publik.v9i2.327.
[3] F. U. Haq, “PENGGUNAAN GOOGLE REVIEW SEBAGAI PENILAIAN KEPUASAN PENGUNJUNG DALAM PARIWISATA,” Tornare, vol. 2, no. 1, p. 10, Jan. 2020, doi: 10.24198/tornare.v2i1.25826.
[4] O. I. Gifari, M. Adha, I. Rifky Hendrawan, F. Freddy, and S. Durrand, “Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine,” JIFOTECH (JOURNAL OF INFORMATION TECHNOLOGY, vol. 2, no. 1, 2022.
[5] M. R. Al, F. Zain, and M. Kamayani, “Analisis Sentimen Ulasan Pelanggan Online Ubi Madu Cilembu Abah Nana Menggunakan Algoritma Naïve Bayes,” Jurnal Sistem Komputer dan Informatika (JSON) Hal: 11−, vol. 21, no. 1, 2023, doi: 10.30865/json.v5i1.6646.
[6] M. F. Sasongko, F. Fauziah, and N. Hayati, “Analisis Sentimen Opini Masyarakat Terhadap Kuliner DKI Jakarta dengan Metode Naïve Baiyes dan Support Vector Machine,” STRING (Satuan Tulisan Riset dan Inovasi Teknologi), vol. 7, no. 3, p. 241, Apr. 2023, doi: 10.30998/string.v7i3.13931.
[7] H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, Feb. 2021, doi: 10.34148/teknika.v10i1.311.
[8] S. Shevira, I. Made, A. D. Suarjaya, and P. Wira Buana, “Pengaruh Kombinasi dan Urutan Pre-Processing pada Tweets Bahasa Indonesia,” 2022.
[9] D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “PENERAPAN ALGORITMA SVM UNTUK ANALISIS SENTIMEN PADA DATA TWITTER KOMISI PEMBERANTASAN KORUPSI REPUBLIK INDONESIA,” Edutic - Scientific Journal of Informatics Education, vol. 7, no. 1, Nov. 2020, doi: 10.21107/edutic.v7i1.8779.
[10] R. Riyaddulloh and A. Romadhony, “Normalisasi Teks Bahasa Indonesia Berbasis Kamus Slang Studi Kasus: Tweet Produk Gadget Pada Twitter,” Agustus, vol. 8, no. 4, 2021.
[11] P. A. Sumitro, Rasiban, D. I. Mulyana, and W. Saputro, “Analisis Sentimen Terhadap Vaksin Covid-19 di Indonesia pada Twitter Menggunakan Metode Lexicon Based,” J-ICOM - Jurnal Informatika dan Teknologi Komputer, vol. 2, no. 2, pp. 50–56, Oct. 2021, doi: 10.33059/j-icom.v2i2.4009.
[12] F. Fathonah and A. Herliana, “Penerapan Text Mining Analisis Sentimen Mengenai Vaksin Covid - 19 Menggunakan Metode Naïve Bayes,” Jurnal Sains dan Informatika, vol. 7, no. 2, pp. 155–164, Dec. 2021, doi: 10.34128/jsi.v7i2.331.
[13] D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” 2021.
[14] A. Kurniawan and S. Adinugroho, “Analisis Sentimen Opini Film Menggunakan Metode Naïve Bayes dan Lexicon Based Features,” 2019. [Online]. Available: http://j-ptiik.ub.ac.id
[15] A. Aziz and Fauziah, “Analisis Sentimen Identifikasi Opini Terhadap Produk, Layanan dan Kebijakan Perusahaan Menggunakan Algoritma TF-IDF dan SentiStrength,” Abdul Aziz, 2022.
[16] J. E. Br Sinulingga and H. C. K. Sitorus, “Analisis Sentimen Opini Masyarakat terhadap Film Horor Indonesia Menggunakan Metode SVM dan TF-IDF,” Jurnal Manajemen Informatika (JAMIKA), vol. 14, no. 1, pp. 42–53, Feb. 2024, doi: 10.34010/jamika.v14i1.11946.
Downloads
Published
Issue
Section
License
CC BY-SA 4.0
Attribution-ShareAlike 4.0
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
