ANALISIS SENTIMEN TERHADAP PENGGUNAAN APLIKASI MOBILE JKN DENGAN PENDEKATAN RANDOM FOREST CLASSIFIER
DOI:
https://doi.org/10.31849/gf3ekc32Keywords:
Sentimen Analisis, BPJS Kesehatan, Mobile JKN, TF-IDF, Random Forest ClassifierAbstract
Health is a fundamental need for all people. In an effort to ensure equitable access to health insurance services in Indonesia, the government has assigned BPJS Kesehatan as the national health insurance provider. As part of its digital innovation, BPJS Kesehatan introduced the Mobile JKN application to make it easier for the public to access healthcare services online. However, the implementation of this application still raises various complaints, such as login difficulties, update disruptions, and limited features, as reflected in predominantly negative user reviews. To objectively assess public perception, this study conducted sentiment analysis on 5,000 user reviews of Mobile JKN obtained from the Google Play Store. The analysis process included cleaning, tokenizing, stopword removal, stemming, labeling, and word weighting using TF-IDF. Classification was performed using the Random Forest Classifier algorithm. The results showed that out of 976 test data, 883 were correctly predicted and 93 were misclassified, with an accuracy of 90.47%, precision of 90.15%, recall of 90.47%, and an F1-score of 89.90%. These findings demonstrate that Random Forest is effective in identifying both positive and negative sentiments and can serve as a basis for the future development of the Mobile JKN application
References
[1] C. K. R. Lasso, “FAKTOR HAMBATAN DALAM AKSES PELAYANAN KESEHATAN PADA PUSKESMAS DI INDONESIA: SCOPING REVIEW,” J. Ilm. Permas J. Ilm. STIKES Kendal, vol. 14, no. 4, pp. 1337–1344, 2023, doi: 10.32767/jusikom.v7i1.1538.
[2] R. Syaputri and B. Hartono, “Implementasi Mutu Pelayanan Jaminan Kesehatan Nasional ( JKN ) Di Dinas Kesehatan Kabupaten Rokan Hilir ( Systematic Literature Riview ),” J. Ilm. Kesehat. Indones., vol. 1, no. 1, pp. 108–114, 2023, [Online]. Available: https://publikasi.abidan.org/index.php/jiki/article/view/159
[3] I. E. Putra, Asriyanik, and F. F. Azzahra, “PEMANFAATAN MULTINOMIAL NAIVE BAYES UNTUK ANALISIS,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 2, pp. 3283–3291, 2025.
[4] S. Roiqoh, B. Zaman, and Kartono, “Analisis Sentimen Berbasis Aspek Ulasan Aplikasi Mobile JKN dengan Lexicon Based dan Naïve Bayes,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1582–1592, 2023, doi: 10.30865/mib.v7i3.6194.
[5] N. Maulida, N. Suarna, and W. Prihartono, “Analisis Ulasan Sentimen Aplikasi Mobile Jkn Dengan Algoritma Support Vector Machine Berbasis Particle Swarm Optimization,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1651–1658, 2024, doi: 10.36040/jati.v8i2.9105.
[6] M. R. U. Pulungan, D. E. Ratnawati, and B. Rahayudi, “Analisis Sentimen Ulasan Aplikasi PeduliLindungi dengan Metode Random Forest,” J. Pengemb. Teknol. Inf. dan Ilmu Komun., vol. 6, no. 9, pp. 4378–4385, 2022, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/download/11582/5142
[7] F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 9, pp. 4305–4313, 2022.
[8] A. Priofani, M. Devega, Yuhelmi, and Walhidayat, “ANALISIS SENTIMEN TERHADAP ULASAN PADA WHIZ PRIME HOTEL SUDIRMAN PEKANBARU MENGGUNAKAN SUPPORT VECTOR MACHINE DAN NAIVE BAYES,” Zo. J. Sist. Inf., vol. 7, no. 2, pp. 490–501, 2025.
[9] M. M. Rohman, Indriati, and S. Adinugroho, “Analisis Sentimen pada Ulasan Aplikasi Mobile JKN Menggunakan Metode Maximum Entropy dan Seleksi Fitur Gini Index Text,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 6, pp. 2646–2654, 2021, [Online]. Available: http://j-ptiik.ub.ac.id
[10] A. Sagita, A. Faqih, G. Dwilestari, B. Siswoyo, and D. Pratama, “Penerapan Metode Random Forest Dalam Menganalisis Sentimen Pengguna Aplikasi Capcut Di Google Play Store,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3307–3313, 2023, doi: 10.36040/jati.v7i6.8205.
[11] S. Nanda, D. Mualfah, and D. A. Fitri, “Analisis Sentimen Kepuasan Pengguna Terhadap Layanan Streaming Mola Menggunakan Algoritma Random Forest,” J. Apl. Teknol. Inf. dan Manaj., vol. 3, no. 2, pp. 210–219, 2022, doi: 10.31102/jatim.v3i2.1592.
[12] N. A. Hapsari and A. D. Indriyanti, “Analisis Sentimen pada Aplikasi Dompet Digital Menggunakan Algoritma Random Forest,” J. Emerg. Inf. Syst. Bus. Intell., vol. 04, no. 03, pp. 186–192, 2023.
[13] A. Fahrezi and A. Solichin, “ANALISIS SENTIMEN ULASAN APLIKASI MOBILE JKN PADA PLAY STORE MENGGUNAKAN METODE MULTINOMIAL NAÏVE BAYES,” Semin. Nas. Mhs. Fak. Teknol. Inf., vol. 3, no. 2, pp. 1–10, 2024.
[14] R. Azhar, A. Surahman, and C. Juliane, “Analisis Sentimen Terhadap Cryptocurrency Berbasis Python TextBlob Menggunakan Algoritma Naïve Bayes,” J. Sains Komput. Inform., vol. 6, no. 1, pp. 267–281, 2022.
[15] M. F. Y. Herjanto and Carudin, “ANALISIS SENTIMEN ULASAN PENGGUNA APLIKASI SIREKAP PADA PLAY STORE MENGGUNAKAN ALGORITMA RANDOM FOREST CLASSIFER,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 2, pp. 1204–1210, 2024, doi: 10.23960/jitet.v12i2.4192.
[16] Y. Darmayunata, M. Devega, and Y. Yuhelmi, “Application of SMART Method and Dashboard Visualization for Student Code of Conduct Violations,” Sistemasi, vol. 13, no. 5, pp. 2237–2253, 2024, doi: 10.32520/stmsi.v13i5.4593.
[17] Z. Yunizar, Rusnani, Z. Ardian, H. A. Aidilof, and O. K. M. M. Maulana, “ANALISIS SENTIMEN PADA TWITTER TERHADAP APLIKASI MOBILE JKN MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER,” J. Informatics Comput. Sci., vol. 9, no. 2, pp. 103–111, 2023, doi: 10.36596/jitu.v6i1.781.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 ZONAsi: Jurnal Sistem Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
CC BY-SA 4.0
Attribution-ShareAlike 4.0
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
