Review Instrumen Pemantauan Perilaku Geoteknik

Authors

  • Muhammad Toyeb Program Studi K3 Fakultas Pendidikan dan Vokasi Universitas Lancang Kuning
  • Zainuri Program Studi Teknik Sipil Fakultas Teknik Universitas Lancang Kuning
  • Yogi Yunefri Program Studi Magister Pendidikan Vokasi Keteknikan, Sekolah Pasca Sarjana, Universitas Lancang Kuning
  • Ahmad Zamsuri Program Studi Magister Ilmu Komputer, Sekolah Pasca Sarjana, Universitas Lancang Kuning

DOI:

https://doi.org/10.31849/txxbry32

Keywords:

Geotechnical instrumentation, monitoring, soil deformation, IoT, fiber optic sensing

Abstract

Geotechnical behavior monitoring plays a crucial role in ensuring the safety, reliability, and sustainability of infrastructure. Geotechnical instruments are employed to detect critical parameters such as deformation, pore water pressure, settlement, soil stress, and environmental influences. This article presents a comprehensive literature review on the recent development of geotechnical instrumentation and monitoring methods, ranging from conventional devices such as inclinometers, extensometers, tiltmeters, piezometers, and earth pressure cells  to advanced technologies based on fiber optic sensing, Internet of Things (IoT) sensors, and real-time digital systems. The latest approaches emphasize the integration of multi-sensor data, big data analytics, and digital twin applications to enhance early detection capabilities of potential geotechnical failures. A comparative analysis of advantages and limitations shows that effective monitoring strategies require a combination of proven conventional methods with adaptive advanced technologies. Consequently, the future direction of geotechnical monitoring systems is oriented toward efficiency, high accuracy, and predictive capabilities supported by artificial intelligence, thereby enabling faster and more reliable decision-making in geotechnical risk management

References

[1] A. Carri, A. Valletta, E. Cavalca, R. Savi, and A. Segalini, “Advantages of iot‐based geotechnical monitoring systems integrating automatic procedures for data acquisition and elaboration,” Sensors, vol. 21, no. 6, Mar. 2021, doi: 10.3390/s21062249.

[2] C. Nasika, P. Diez, P. Gerard, T. J. Massart, and S. Zlotnik, “Towards real time assessment of earthfill dams via Model Order Reduction,” Finite elements in analysis and design, vol. 199, p. 103666, 2022.

[3] M. Le Breton, F. Liébault, L. Baillet, A. Charléty, É. Larose, and S. Tedjini, “Dense and long-term monitoring of earth surface processes with passive RFID—a review,” Earth Sci Rev, vol. 234, p. 104225, 2022.

[4] W. Tan, S. Wu, Y. Li, and Q. Guo, “Digital Twins’ Application for Geotechnical Engineering: A Review of Current Status and Future Directions in China,” Applied Sciences, vol. 15, no. 15, p. 8229, Jul. 2025, doi: 10.3390/app15158229.

[5] T. F. de Souza Junior, J. L. S. Borges, C. F. Silva, and K. S. Heineck, “Design, construction, and validation of an experimental inclinometer probe,” Soils and Rocks, vol. 47, no. 4, Oct. 2024, doi: 10.28927/SR.2024.000623.

[6] H. Mohamad, A. A. A. M. Beddelee, M. F. Ghazali, H. E. Lee, K. Chaiyasarn, and M. Y. M. Nasir, “Distributed fibre optic inclinometer with cloud-based monitoring system,” Engineering Science and Technology, an International Journal, vol. 41, p. 101406, 2023, doi: https://doi.org/10.1016/j.jestch.2023.101406.

[7] F. Freddi, L. Mingazzi, E. Pozzi, and N. Aresi, “Laboratory Assessment of an In-Place Inclinometer Chain for Structural and Geotechnical Monitoring,” Sensors (Basel), vol. 23, no. 20, Oct. 2023, doi: 10.3390/s23208379.

[8] M. A. Alias et al., “A High-Precision Extensometer System for Ground Displacement Measurement Using Fiber Bragg Grating,” IEEE Sens J, vol. 22, no. 9, pp. 8509–8521, May 2022, doi: 10.1109/JSEN.2022.3159850.

[9] A. Gholinia, M. Nikkhah, and R. Naderi, “Validation of borehole extensometers results in geotechnical monitoring,” Environ Earth Sci, vol. 81, no. 11, p. 312, 2022, doi: 10.1007/s12665-022-10422-9.

[10] S. Faisal, S. Paul, and M. Gary, “Data-Based Modeling Approaches for Short-Term Prediction of Embankment Settlement Using Magnetic Extensometer Time-Series Data,” International Journal of Geomechanics, vol. 22, no. 2, p. 04021269, Feb. 2022, doi: 10.1061/(ASCE)GM.1943-5622.0002253.

[11] H. A. Penido, G. B. Vasconcellos, A. A. Gontijo, G. P. Ribas, and L. R. Fonseca, “Slope Monitoring along the Vitória-Minas Railway using Tiltmeters with Satellite Communication,” SLOPE Stability 2024, 2024.

[12] Gy. Mentes, “Observing slope stability changes on the basis of tilt and hydrologic measurements,” Journal of Applied Geodesy, vol. 11, no. 2, pp. 115–121, 2017, doi: doi:10.1515/jag-2016-0020.

[13] A. Ashida; K. Tsusaka; S. Mochiji; G. Coelho; M. Himeno; A. Iino, “Feasibility Assessment of Tiltmeter Monitoring for an Offshore Monoclinal Dipping Saline Aquifer CCS Site: Insights from Coupled Geomechanical Modeling,” in APOGCE 2024, Oct. 2024.

[14] X. Zhu et al., “Determination of borehole tiltmeter orientation using earth tides,” J Geod, vol. 98, no. 8, p. 72, 2024, doi: 10.1007/s00190-024-01878-7.

[15] B. G. Clarke, Pressuremeters in Geotechnical Design, 2nd Edition. London: CRC Press, 2022. Accessed: Sep. 22, 2025. [Online]. Available: . https://doi.org/10.1201/9781003028925

[16] V. Marefat, F. Duhaime, R. P. Chapuis, and V. Le Borgne, “Performance of Fully Grouted Piezometers under Transient Flow Conditions: Field Study and Numerical Results,” Geotechnical Testing Journal , vol. 42, no. 2, pp. 433–456, Mar. 2019, doi: 10.1520/GTJ20170290.

[17] S. Martens, S. Li, R. Hoda, P. Oblozinsky, and S. Iqbal, “Applicability of the fully grouted piezometer installation method for transient seepage conditions,” Proceedings of GeoVirtual, pp. 14–16, 2020.

[18] V. K. Gade and S. M. Dasaka, “Influence of Contacting Material on Calibration Response of Diaphragm Earth Pressure Cells,” Indian Geotechnical Journal, vol. 50, no. 1, pp. 133–141, 2020, doi: 10.1007/s40098-019-00363-9.

[19] C. P. G. Jayalath and K. D. Wimalasena, “Laboratory calibration of earth pressure cells,” International Journal of GEOMATE, vol. 20, no. 82, pp. 61–67, Jun. 2021, doi: 10.21660/2021.82.Gx362.

[20] Y. Zheng, Z.-W. Zhu, W. Xiao, and Q.-X. Deng, “Review of fiber optic sensors in geotechnical health monitoring,” Optical Fiber Technology, vol. 54, p. 102127, 2020, doi: https://doi.org/10.1016/j.yofte.2019.102127.

[21] J. Ma, H. Pei, H. Zhu, B. Shi, and J. Yin, “A review of previous studies on the applications of fiber optic sensing technologies in geotechnical monitoring,” Rock Mechanics Bulletin, vol. 2, no. 1, p. 100021, 2023, doi: https://doi.org/10.1016/j.rockmb.2022.100021.

[22] H.-H. Zhu, D.-Y. Wang, B. Shi, X. Wang, and G.-Q. Wei, “Performance monitoring of a curved shield tunnel during adjacent excavations using a fiber optic nervous sensing system,” Tunnelling and Underground Space Technology, vol. 124, p. 104483, 2022, doi: https://doi.org/10.1016/j.tust.2022.104483.

[23] J. Wu, L. Dai, G. Xue, and J. Chen, “Theory and Technology of Digital Twin Model for Geotechnical Engineering,” in Proceedings of the 8th International Conference on Civil Engineering, G. Feng, Ed., Singapore: Springer Singapore, 2022, pp. 403–411.

[24] A. Khan, Y. Li, M. Shoaib, U. Sajjad, and F. Rui, “Utilizing Machine Learning and Digital Twin Technology for Rock Parameter Estimation from Drilling Data,” Journal of Intelligent Construction, vol. 3, no. 2, pp. 1–23, 2025, doi: 10.26599/Jic.2025.9180088.

Downloads

Published

2025-12-01

How to Cite

Review Instrumen Pemantauan Perilaku Geoteknik. (2025). SEMASTER: Seminar Nasional Teknologi Informasi & Ilmu Komputer, 4(1), 280-290. https://doi.org/10.31849/txxbry32

Most read articles by the same author(s)