PENERAPAN METODE K-MEANS CLUSTERING UNTUK ANALISA BARANG TERLARIS DI DEPO BANGUNAN JAKARTA
DOI:
https://doi.org/10.31849/62xjmm66Keywords:
K-Means Clustering, Data Mining, Building DepotAbstract
Information systems are developing rapidly due to the increasing need for information, which also results in the growth of large amounts of data. However, it is important that this data can be processed into quality information that is useful to users. Depo Bangunan Jakarta, which specializes in selling various types of hand, power, machine, and accessory tools, faces this challenge. With various types and sizes of goods, Depo Bangunan Jakarta must manage its stock well to avoid wastage in procurement. Data mining is a solution for business people to increase their company's sales. The method used in data mining includes K-Means Clustering, which classifies data into several groups based on their similar characteristics. With this clustering, it is expected that businesses can identify the right marketing strategy for their consumers. The results showed that items such as 4" WA60 LIPPRO Flexible Grinding Stone, PH2 X 65mm BOSCH Screw Eye (++), FERRARI KW 1 Iron Chalk, and 3mm Sling Clamps are the best-selling items in Jakarta Building Depot.
References
[1] E. Nur, “Peran Media Massa Dalam Menghadapi Serbuan Media Online,” Maj. Ilm. Semi Pop. Komun. Massa, vol. 02, no. 1, pp. 51–64, 2021.
[2] Sukardi, Jumadi, and Najamuddin, “Perubahan Alat-Alat Produksi Pandai Besi Kecamatan Tellu Limpoe Kabupaten Sidenreng Rappang 1990-2017,” Attoriolog J. Pemikir. Kesejarahan dan Pendidik. Sej., vol. 18, no. 1, pp. 21–35, 2020.
[3] D. Jeremia et al., Dasar Pemrograman Java. Depok: Rajagrafindo Persada, 2021.
[4] S. Dwiasnati, W. Gunawan, R. R. Oprasto, B. O. Lubis, and B. Santoso, Algoritma dan Pemrograman Implementasi Menggunakan Python. Bandar Lampung: CV. Keranjang Teknologi Media, 2023.
[5] G. Aprilianur and E. L. Hadisaputro, “Penerapan Data Mining Menggunakan Metode K-MeansClustering Untuk Analisa Penjualan Toko Myam HijabPenajam,” Jupiter, vol. 14, no. 1, pp. 161–170, 2022.
[6] M. Risqi Ananda, N. Sandra, E. Fadhila, A. Rahma, and N. Nurbaiti, “Data Mining dalam Perusahaan PT Indofood Lubuk Pakam,” J. Ekon. Manaj. Dan Bisnis, vol. 2, no. 1, pp. 97–102, 2023, doi: 10.47467/comit.v2i1.124.
[7] I. Ernawati, “Data Mining Sebagai Salah Satu Solusi Strategi Bisnis,” Inform. J. Ilmu Komput., vol. 14, no. 1, p. 9, 2018, doi: 10.52958/iftk.v14i1.367.
[8] M. Susanti, A. Salim, B. O. Lubis, and I. Carolina, “Sistem Penunjang Keputusan Pemilihan Smartphone Entry Level Sebagai Penunjang E-Learning,” J. Teknol. Inform. dan Komput., vol. 8, no. 2, pp. 188–201, 2022, doi: 10.37012/jtik.v8i2.1145.
[9] P. Mai Sarah Tarigan, J. T. Hardinata, H. Qurniawan, M. Safii, and R. Winanjaya, “Implementasi Data Mining Menggunakan Algoritma Apriori Dalam Menentukan Persediaan Barang (Studi Kasus : Toko Sinar Harahap),” Just IT J. Sist. Informasi, Teknol. Inf. dan Komput., vol. 12, no. 2, pp. 51–61, 2022.
[10] S. Ependi and M. Akbar, “Implementasi Data Mining pada Penjualan Produk dengan Menggunakan Algoritma Apriori,” in Bina Darma Conference on Computer Science, 2021, vol. 3, no. 1, pp. 220–225, doi: 10.33364/algoritma/v.20-1.1259.
[11] S. Ependi and M. Akbar, “Implementasi Data Mining Pada Penjualan Produk dengan Algoritma Apriori,” Bina Darma Conf. Comput. Sci., vol. 3, no. 1, pp. 220–225, 2021.
[12] O. Somantri, S. Wiyono, and D. Dairoh, “Metode K-Means untuk Optimasi Klasifikasi Tema Tugas Akhir Mahasiswa Menggunakan Support Vector Machine (SVM),” Sci. J. Informatics, vol. 3, no. 1, pp. 34–45, 2016, doi: 10.15294/sji.v3i1.5845.
[13] B. O. Lubis, D. Oscar, F. W. Fibriany, B. Santoso, Jefi, and A. Rusman, “Classification of tomato leaf disease and combination extraction features using K-NN algorithm,” AIP Conf. Proc., vol. 2714, no. November 2021, 2023, doi: 10.1063/5.0128539.
[14] P. D. Cipta and D. Satrio, “Strategi Pemasaran Produk Dan Layanan Unit Pelaksana Teknis Dinas (UPTD) Balai Pelayanan Dan Saintifikasi Jamu (BPJS) Kota Pekalongan,” J. Litbang Kota Pekalongan, vol. 21, no. 1, pp. 39–47, 2023.
[15] W. T. Pambudi and A. Witanti, “Penerapan Algoritma K-Means Clustering Untuk Menganalisis Penjualan Pada Toko Ayu Collection Barbasis Web,” J. Inform. Univ. Pamulang, vol. 6, no. 3, pp. 645–650, 2021.
[16] F. Amin, D. S. Anggraeni, and Q. Aini, “Penerapan Metode K-Means dalam Penjualan Produk Souq.Com,” Appl. Inf. Syst. Manag., vol. 5, no. 1, pp. 7–14, 2022, doi: 10.15408/aism.v5i1.22534.
[17] M. H. Fakhriza and K. Umam, “Analisis Produk Terlaris Menggunakan Metode K-Means Clustering Pada “PT.Sukanda Djaya",” JIKA (Jurnal Inform., vol. 5, no. 1, p. 8, 2021, doi: 10.31000/jika.v5i1.3236.
[18] W. Nengsih, “Analisa Akurasi Permodelan Supervised Dan Unsupervised Learning Menggunakan Data Mining,” Sebatik, vol. 23, no. 2, pp. 285–291, 2019, doi: 10.46984/sebatik.v23i2.771.
[19] S. Suliman, “Implementasi Data Mining Terhadap Prestasi Belajar Mahasiswa Berdasarkan Pergaulan dan Sosial Ekonomi Dengan Algoritma K-Means Clustering,” Simkom, vol. 6, no. 1, pp. 1–11, 2021, doi: 10.51717/simkom.v6i1.48.
[20] Yuli Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,” J. Edik Inform., vol. 2, no. 2, pp. 213–219, 2019.
[21] B. D. Mudzakkir, “Pengelompokan Data Penjualan Produk Pada PT Advanta Seeds Indonesia Menggunakan Metode K-Means,” J. Mhs. Tek. Inform., vol. 2, no. 2, pp. 34–40, 2018.
[22] F. Indriyani and E. Irfiani, “Clustering Data Penjualan pada Toko Perlengkapan Outdoor Menggunakan Metode K-Means,” JUITA J. Inform., 2019, doi: 10.30595/juita.v7i2.5529.
[23] V. Alvianatinova, I. Ali, N. Rahaningsih, and A. Bahtiar, “Penerapan Algoritma K-Means Clustering Dalam Pengelompokan Data Penjualan Supermarket Berdasarkan Cabang (Branch),” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1529–1535, 2024, doi: 10.36040/jati.v8i2.8993.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 ZONAsi: Jurnal Sistem Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
CC BY-SA 4.0
Attribution-ShareAlike 4.0
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
