ANALISIS SENTIMEN TERHADAP ULASAN PADA WHIZ PRIME HOTEL SUDIRMAN PEKANBARU MENGGUNAKAN SUPPORT VECTOR MACHINE DAN NAIVE BAYES

Authors

  • Alfariz Priofani Universitas Lancang Kuning
  • Mariza Devega Dosen Universitas Lancang Kuning
  • Yuhelmi Yuhelmi Universitas Lancang Kuning
  • Walhidayat Walhidayat Universitas Lancang Kuning

DOI:

https://doi.org/10.31849/zn.v7i2.25888

Keywords:

Analisis Sentimen, Support Vector Machine, Naive Bayes, Hotel, Machine Learning

Abstract

Kemajuan teknologi informasi telah mengubah cara manusia menjalankan bisnis, termasuk dalam industri perhotelan melalui platform E-Commerce seperti Traveloka. Ulasan pelanggan menjadi sumber informasi penting yang dapat memengaruhi keputusan calon pelanggan. Penelitian ini menganalisis sentimen ulasan pelanggan terhadap Whiz Prime Hotel Sudirman Pekanbaru menggunakan algoritma Support Vector Machine (SVM) dan Naive Bayes. Data sebanyak 4336 ulasan dikumpulkan dari situs Traveloka, kemudian diproses menggunakan metode Term Frequency-Inverse Document Frequency (TF-IDF). Setelah tahap praproses, sebanyak 2165 ulasan dianalisis dengan hasil distribusi sentimen positif sebesar 72,79%, negatif 15,38%, dan netral 11,82%. Algoritma SVM menunjukkan akurasi tertinggi sebesar 77%, sementara Naive Bayes mencapai akurasi 73%. Hasil ini memberikan wawasan bagi pihak hotel untuk memahami kekuatan dan kelemahan layanan, sehingga dapat meningkatkan kepuasan pelanggan secara keseluruhan.

References

[1] L. Linda and Y. S. M. A. Dharasta, “Pengaruh Perilaku Konsumen Aplikasi Traveloka terhadap Kepuasan Konsumen,” Jurnal Manajemen, Bisnis dan Kewirausahaan, vol. 2, no. 2, pp. 42–48, 2022.
[2] W. Sitaresma and S. Ayuni, “MENINGKATKAN LOYALTY KONSUMEN TRAVELOKA BERBASIS E-SERVICE QUALITY DAN SATISFACTION ‘Studi Kasus Pada Aplikasi Traveloka,’” Prosiding Konstelasi Ilmiah Mahasiswa Unissula (KIMU) Klaster Ekonomi, vol. 1, no. 1, 2021.
[3] T. Ernayanti, M. Mustafid, A. Rusgiyono, and A. R. Hakim, “PENGGUNAAN SELEKSI FITUR CHI-SQUARE DAN ALGORITMA MULTINOMIAL NAÏVE BAYES UNTUK ANALISIS SENTIMEN PELANGGGAN TOKOPEDIA,” Jurnal Gaussian, vol. 11, no. 4, pp. 562–571, Feb. 2023, doi: 10.14710/j.gauss.11.4.562-571.
[4] I. P. Rahayu, A. Fauzi, and J. Indra, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Naive Bayes Dan Support Vector Machine,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 2, p. 296, Dec. 2022, doi: 10.30865/json.v4i2.5381.
[5] R. El Husna, R. Wasono, and M. Al Haris, “ANALISIS KLASIFIKASI SENTIMEN PADA TWITTER MENGENAI NETFLIX YANG DIBLOKIR OLEH TELKOM MENGGUNAKAN NAÏVE BAYES CLASSIFIER DAN SUPPORT VECTOR MACHINE JURNAL ILMIAH,” 2020. [Online]. Available: http://repository.unimus.ac.id
[6] Z. Alhaq, A. Mustopa, S. Mulyatun, and J. D. Santoso, “Penerapan Metode Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter,” Journal of Information System Management (JOISM), vol. 3, no. 1, pp. 16–21, 2021.
[7] Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” Jurnal KomtekInfo, pp. 1–7, Jan. 2023, doi: 10.35134/komtekinfo.v10i1.330.
[8] E. Yuniar, D. S. Utsalinah, and D. Wahyuningsih, “Implementasi Scrapping Data Untuk Sentiment Analysis Pengguna Dompet Digital dengan Menggunakan Algoritma Machine Learning,” Jurnal Janitra Informatika dan Sistem Informasi, vol. 2, no. 1, pp. 35–42, Apr. 2022, doi: 10.25008/janitra.v2i1.145.
[9] F. Novianti and K. R. N. Wardani, “Analisis Sentimen Masyarakat Terhadap Data Tweet Traveloka Selama Rapid Test Antigen Menggunakan Algoritma Naïve Bayes,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 8, no. 3, pp. 922–933, 2023.
[10] M. A. Saddam, E. K. Dewantara, and A. Solichin, “Sentiment Analysis of Flood Disaster Management in Jakarta on Twitter Using Support Vector Machines,” Sinkron, vol. 8, no. 1, pp. 470–479, Jan. 2023, doi: 10.33395/sinkron.v8i1.12063.
[11] N. Herlinawati et al., “ANALISIS SENTIMEN ZOOM CLOUD MEETINGS DI PLAY STORE MENGGUNAKAN NAÏVE BAYES DAN SUPPORT VECTOR MACHINE,” 2020.
[12] A. Triawan, “Penerapan Metode Naïve Bayes Untuk Rekomendasi Topik Tugas Akhir Berdasarkan Daftar Hasil Studi Mahasiswa di Perguruan Tinggi,” Teknois: Jurnal Ilmiah Teknologi Informasi dan Sains, vol. 10, no. 2, pp. 58–70, 2020.
[13] R. Meifitrah, I. Darmawan, and O. N. Pratiwi, “Sentiment analysis of tokopedia application review to service product recommender system using neural collaborative filtering for marketplace in Indonesia,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2020, p. 012071.
[14] A. F. Watratan and D. Moeis, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia,” Journal of Applied Computer Science and Technology, vol. 1, no. 1, pp. 7–14, 2020.
[15] J. E. B. Sinulingga and H. C. K. Sitorus, “Analisis Sentimen Opini Masyarakat terhadap Film Horor Indonesia Menggunakan Metode SVM dan TF-IDF,” Jurnal Manajemen Informatika (JAMIKA), vol. 14, no. 1, pp. 42–53, 2024.

Downloads

Published

2025-05-25

How to Cite

[1]
“ANALISIS SENTIMEN TERHADAP ULASAN PADA WHIZ PRIME HOTEL SUDIRMAN PEKANBARU MENGGUNAKAN SUPPORT VECTOR MACHINE DAN NAIVE BAYES”, zn, vol. 7, no. 2, pp. 490–501, May 2025, doi: 10.31849/zn.v7i2.25888.