PERBANDINGAN METODE NAÏVE BAYES, DECISION TREE, DAN KNN DALAM ANALISIS SENTIMEN APLIKASI GOJEK DI PLAYSTORE
DOI:
https://doi.org/10.31849/zjf8x279Keywords:
Penambangan Data, Analisis Sentimen, Machine Learning, Naive Bayes, Decision Tree, K-Nearest NeighbourAbstract
Sentiment analysis on user evaluation of Gojek application services on Play Store is important to understand user opinions on the services provided. This study compares three machine learning methods, namely Naïve Bayes, Decision Tree, and K-Nearest Neighbors (KNN) when categorizing user sentiment on Google Play Store as positive, negative, or neutral. The data processed comes from the Gojek user review dataset obtained from Kaggle. The analysis process involves data preprocessing (cleaning, stopword removal, tokenization, and split data), data transformation, and implementation of classification algorithms. The evaluation was carried out using accuracy, precision, recall, and F1-score metrics. The results of the study prove that Naïve Bayes has the best performance with an accuracy of 89%, followed by KNN (86%) and Decision Tree (84%). This study provides good insight for application developers in choosing the best method to understand user opinions and improve service quality.
References
[1] M. Tohir, A. Primadi, and S. P. Budianti, “Analisis Pengaruh Perkembangan Teknologi Digitalisasi pada Bidang Transportasi dan Logistik Terhadap Sumber Daya Manusia,” J. Pengabdi. Masy. dan Penelit. Terap., vol. 1, no. 2, pp. 130–139, 2023.
[2] M. Idris, A. Rifai, and K. D. Tania, “Sentiment Analysis of Tokopedia App Reviews using Machine Learning and Word Embeddings,” vol. 9, no. 1, pp. 210–219, 2025.
[3] N. N. K. S. R A Rahman1, V H Pranatawijaya2, “Analisis Sentimen Berbasis Aspek Pada Ulasan Aplikasi Shopee Menggunakan Algoritma Naïve Bayes,” Jutisi J. Ilm. Tek. Inform. dan Sist. Inf., vol. 13, no. 1, p. 659, 2024, doi: 10.35889/jutisi.v13i1.1826.
[4] A. Ramadina, K. D. Tania, A. Wedhasmara, and A. Meiriza, “Knowledge Extraction of Gojek Application Review Using Aspect-based Sentiment Analysis,” Indones. J. Comput. Sci., vol. 13, no. 3, pp. 3962–3976, 2024, [Online]. Available: http://ijcs.stmikindonesia.ac.id/ijcs/index.php/ijcs/article/view/3135
[5] Muhammad Ali Akbar and Achmas Solichin, “Perbandingan Sentimen Ulasan Pengguna Aplikasi Ride-Hailing Gojek dan Grab Menggunakan Algoritma Multinomial Naïve Bayes,” KRESNA J. Ris. dan Pengabdi. Masy., vol. 4, no. 1, pp. 1–11, 2024, doi: 10.36080/kresna.v4i1.129.
[6] Friska Aditia Indriyani, Ahmad Fauzi, and Sutan Faisal, “Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine,” TEKNOSAINS J. Sains, Teknol. dan Inform., vol. 10, no. 2, pp. 176–184, 2023, doi: 10.37373/tekno.v10i2.419.
[7] K. Kusumaningtyas, I. Dwijayanti, A. R. Lahitani, and M. Habibi, “Analisis Tren Topik dalam Ulasan Negatif Aplikasi M-Banking Menggunakan Latent Dirichlet Allocation,” vol. 14, no. 3, pp. 549–555, 2024.
[8] D. Nurwahidah, G. Dwilestari, N. Dienwati Nuris, and R. Narasati, “Analisis Sentimen Data Ulasan Pengguna Aplikasi Google Kelas Pada Google Play Store Menggunakan Algoritma Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3673–3678, 2024, doi: 10.36040/jati.v7i6.8245.
[9] H. Sujadi, “Analisis Sentimen Pengguna Media Sosial Twitter Terhadap Wabah Covid-19 Dengan Metode Naive Bayes Classifier Dan Support Vector Machine,” INFOTECH J., vol. 8, no. 1, pp. 22–27, 2022, doi: 10.31949/infotech.v8i1.1883.
[10] V. Novalia, K. D. Tania, A. Meiriza, and A. Wedhasmara, "Knowledge Discovery of Application Review Using Word Embedding's Comparison with CNN-LSTM Model on Sentiment Analysis," in 2024 International Conference on Electrical Engineering and Computer Science (ICECOS), Palembang, Indonesia, 2024, pp. 234–238, doi: 10.1109/ICECOS63900.2024.10791113.
[11] F. Alghifari and D. Juardi, “Penerapan Data Mining Pada Penjualan Makanan Dan Minuman Menggunakan Metode Algoritma Naïve Bayes,” J. Ilm. Inform., vol. 9, no. 02, pp. 75–81, 2021, doi: 10.33884/jif.v9i02.3755.
[12] M. L. Al-Ghifari and K. D. Tania, “Sentiment Analysis Performance Value Optimization Using Hyperparamater Tunning With Grid Search On Shopee App Reviews,” Indones. J. Comput. Sci., vol. 12, no. 5, pp. 2351–2365, 2023, doi: 10.33022/ijcs.v12i5.3384.
[13] E. Yuniar, D. S. Utsalinah, and D. Wahyuningsih, “Implementasi Scrapping Data Untuk Sentiment Analysis Pengguna Dompet Digital dengan Menggunakan Algoritma Machine Learning,” J. Janitra Inform. dan Sist. Inf., vol. 2, no. 1, pp. 35–42, 2022, doi: 10.25008/janitra.v2i1.145.
[14] Al Azkiah, D. S., Erizal, E., & Hikmah, F. N. (2024). Perbandingan Algoritma SVM dan Decision Tree Dalam Klasifikasi Kepuasan Pengguna Aplikasi Migo E-Bike di Playstore. Building of Informatics, Technology and Science (BITS), 6(1), 158–167. https://doi.org/10.47065/bits.v6i1.5344
[15] N. Fitriyah, B. Warsito, and D. A. I. Maruddani, “Analisis Sentimen Gojek Pada Media Sosial Twitter Dengan Klasifikasi Support Vector Machine (Svm,” J. Gaussian, vol. 9, no. 3, pp. 376–390, 2020, doi: 10.14710/j.gauss.v9i3.28932.
[16] N. L. W. S. R. Ginantra, C. P. Yanti, G. D. Prasetya, I. B. G. Sarasvananda, and I. K. A. G. Wiguna, “Analisis Sentimen Ulasan Villa di Ubud Menggunakan Metode Naive Bayes, Decision Tree, dan K-NN,” J. Nas. Pendidik. Tek. Inform., vol. 11, no. 3, pp. 205–215, 2022, doi: 10.23887/janapati.v11i3.49450.
[17] Iqbal, M., Davy Wiranata, A., Suwito, R., & Faiz Ananda, R. (2023). Perbandingan Algoritma Naïve Bayes, KNN, dan Decision Tree terhadap Ulasan Aplikasi Threads dan Twitter. Media Online, 4(3), 1799–1807. https://doi.org/10.47065/bits.v6i3.6367
[18] Simanungkalit, A., Naibaho, J. P. P., & Kweldju, A. De. (2024). Analisis Sentimen Berbasis Aspek Pada Ulasan Aplikasi Shopee Menggunakan Algoritma Naïve Bayes. Jutisi : Jurnal Ilmiah Teknik Informatika Dan Sistem Informasi, 13(1), 659. https://doi.org/10.35889/jutisi.v13i1.1826
[19] Irfan, M., & Erizal, E. (2024). Perbandingan Algoritma Naïve Bayes dengan K-Nearest Neighbor Untuk Analisis Sentimen Aplikasi InDrive di Playstore. Jurnal Media Informatika Budidarma, 8(3), 1535. https://doi.org/10.30865/mib.v8i3.7780
Downloads
Published
Issue
Section
License
Copyright (c) 2025 ZONAsi: Jurnal Sistem Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
CC BY-SA 4.0
Attribution-ShareAlike 4.0
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
