Pencegahan Korosi pada Beton dalam Masa Perawatan dengan Cat Anti-korosi berbasis Bituminous

  • Pinta Astuti Universitas Muhammadiyah Yogyakarta
  • Ridha Kautsari Fahma Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Yogyakarta
Keywords: corrosion in concrete, chloride ions, anti-corrosion paint, bituminous, half-cell potential

Abstract

Concrete is a versatile material that is widely used in the construction industry nowadays. However, reinforced concrete has durability issues due to corrosion, which can reduce the structure's service life. Corrosion occurs as a result of high water vapor levels in the environment, as well as extreme air changes accompanied by chloride ion intrusion at the marine environment. As a result, corrosion prevention is required to control the corrosion potential of steel reinforcement in newly fabricated reinforced concrete structures. In this study, corrosion prevention used bituminous-based anti-corrosion paint on the surface of steel reinforcement before fabricating the specimens. The corrosion test specimen is a 15cmx15cmx15cm cube mortar with two embedded steel bars placed 3cm and 5cm from the specimen's upper surface to simulate the thickness of the concrete cover. There are two types of reinforcement treatment variations, with or without anti-corrosion coating at the steel bar surface, each variation consist of three specimens. This study also tested the mechanical properties of concrete, such as flow table, compressive strength, split tensile, density, and shrinkage. The half-cell potential method was used to observe the probability of corrosion for 28 days during the concrete curing period using the water immersion method. According to the corrosion probability test results, the steel reinforcement using bituminous-based anti-corrosion paint had a lower corrosion potential value than the specimen that did not receive coating. Furthermore, specimens with a concrete cover of 5 cm have a lower corrosion potential value than specimens with a concrete cover of 3 cm

Downloads

Download data is not yet available.

References

Al-Negheimish, A., Hussain, R. R., Alhozaimy, A., & Singh, D. D. N. (2021). Corrosion performance of hot-dip galvanized zinc-aluminum coated steel rebars in comparison to the conventional pure zinc coated rebars in concrete environment. Construction and Building Materials, 274, 121921.
Alexander, M., & Beushausen, H. (2019). Durability, service life prediction, and modelling for reinforced concrete structures–review and critique. Cement and Concrete Research, 122, 17-29.
ASTM. (2007). ASTM C-1437 Standard Test Method for Flow of Hydraulic Cement Mortar. American Standard Testing and Material (ASTM International).
ASTM. (2017). ASTM C876-15 Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel ini Concrete. American Society for Testing and Materials. doi:10.1520/c0876-15.
Astuti, P., Rafdinal, R. S., Mahasiripan, A., Hamada, H., Sagawa, Y., & Yamamoto, D. (2018). Potential development of sacrificial anode cathodic protection applied for severely damaged RC beams aged 44 years. Journal of Thailand Concrete Association, 6(2), 24-31.
Astuti, P., Rafdinal, R. S., Kamarulzaman, K., Hamada, H., Sagawa, Y., & Yamamoto, D. (2019). Repair method of deteriorated RC beams by sacrificial anode cathodic protection and corrosion inhibitor. In Proc. The 3rd ACF Symposium 2019 Assessment and Intervention of Existing Structures.
Astuti, P., Rafdinal, R. S., & Sagawa, Y. (2020). A study on repairing system of severely damaged rc beam by cathodic protection using a different kind of sacrificial anodes. Advances in Construction Materials Proceedings of the ConMat'20.
Astuti, P., Kamarulzaman, K., & Hamada, H. (2021). Non-destructive investigation of a 44-year-old RC structure exposed to actual marine tidal environments using electrochemical methods. International Journal of Integrated Engineering, 13(3), 148-157.
Broomfield, J. P. (2007). Repair Guidance Note 1: corrosion of steel in concrete. Concrete, 41(4), 13-14.
BSN (1996) SNI 03-4154-1996 Uji Kuat Lentur. Badan Standar Nasional, Jakarta
BSN (2002a) SNI-03-2491-2002 Metode Pengujian Kuat Tarik Belah Beton. Badan Standar Nasional, Jakarta
BSN (2002b) SNI 03-2847-2002 Tata Cara Perhitungan Struktur Beton untuk Bangunan Gedung. Badan Standar Nasional, Jakarta
BSN (2011) SNI 1974:2011 Cara uji Kuat Tekan Beton dengan Benda Uji Silinder. Badan Standar Nasional, Jakarta
BSN (2014a) SNI 6882:2014 Spesifikasi Mortar untuk Pekerjaan Unit Pasangan. Badan Standar Nasional, Jakarta
BSN (2014b) SNI 7064:2014 Semen Portland Komposit. Badan Standar Nasional, Jakarta
BSN (2016) SNI 1973:2016 Metode uji densitas, volume produksi campuran dan kadar udara (gravimetrik) beton. Badan Standar Nasional, Jakarta
Cedrim, F. A., Almeida, V. L. S. D., Souza, C. A. C. D., Lima, P. R. L., Jesus, M. D. D., & Ribeiro, D. V. (2019). Corrodibility and Adherence of Reinforced Concrete Rebars Electroplated with Zinc and Zinc-Nickel Alloys. Materials Research, 22.
Chen, D., Sun, G., Hu, D., & Shi, J. (2021). Study on the bearing capacity and chloride ion resistance of RC structures under multi-factor corrosive environment and continuous load. Journal of Building Engineering, 44, 102990.
Effendi, Z., Saidi, T., & Aulia, T. B. (2018). Studi Komparasi Variasi Jenis Superplasticizer Terhadap Sifat Mekanis Beton Mutu Tinggi Dengan Menggunakan Fly Ash Abu Cangkang Kelapa Sawit Sebagai Aditif. Jurnal Arsip Rekayasa Sipil dan Perencanaan, 1(3), 158-170.
El Alami, E., Fekak, F. E., Garibaldi, L., & Elkhalfi, A. (2021). A numerical study of pitting corrosion in reinforced concrete structures. Journal of Building Engineering, 43, 102789.
Elma, M., Nurhalisah, N., & Hidayati, A. N. (2020). Effect of temperature and concentration of naoh solutions as inhibitors on iron corrosion rate in water media. Konversi, 9(1), 6-11.
Fonna, S., Ridha, M., Huzni, S., Walid, W. A., Mulya, T. T. D., & Ariffin, A. K. (2017). Corrosion risk of RC buildings after ten years the 2004 tsunami in Banda Aceh-Indonesia. Procedia engineering, 171, 965-976.
Habirun, A. N., & Shidiq, M. I. (2017, July). Peninjauan Masa Layan dan Perbaikan Struktur Dermaga Terhadap Pengaruh Lingkungan Pesisir Pantai. In Prosiding Industrial Research Workshop and National Seminar (Vol. 8, pp. 412-416).
Harahap, S., Hamada, H., Sagawa, Y., & Yamamoto, D. (2019). The Effect of Calcium Nitrite Coating as Corrosion Inhibitor in Seawater-Mixed Mortar. The 3rd ACF Symposium.
Maskur, I. (2017). Perancangan campuran flow mortar untuk pembuatan self compacting concrete dengan FAS 0.5. Dinamika Rekayasa, 13(2), 89-96.
Nayak AR, Dominic DM (2021) Corrosion of Reinforced Concrete A Review. International Research Journal of Engineering and Technology (IRJET) 08 (06)
Polii, R. A., Sumajouw, M. D., & Windah, R. S. (2015). Kuat Tekan Beton Dengan Variasi Agregat Yang Berasal Dari Beberapa Tempat Di Sulawesi Utara. Jurnal Sipil Statik, 3(3).
Pramudiyanto, P., Triwiyono, A. T. A., & Priyosulistyo, H. R. C. (2011). Pengaruh Tebal Selimut Beton Normal pada Laju Korosi Baja Tulangan. INERSIA: lNformasi dan Ekspose hasil Riset teknik SIpil dan Arsitektur, 7(2).
Rompas, G. P., Pangouw, J. D., Pandaleke, R., & Mangare, J. B. (2013). Pengaruh pemanfaatan abu ampas tebu sebagai substitusi parsial semen dalam campuran beton ditinjau terhadap kuat tarik lentur dan modulus elastisitas. Jurnal Sipil Statik, 1(2).
SNI (2014) SNI 7064:2014 Semen Portland Komposit. Badan Standar Nasional, Jakarta
Published
2022-09-20
How to Cite
Astuti, P., & Fahma, R. K. (2022). Pencegahan Korosi pada Beton dalam Masa Perawatan dengan Cat Anti-korosi berbasis Bituminous. Siklus : Jurnal Teknik Sipil, 8(2), 197-205. https://doi.org/10.31849/siklus.v8i2.9865
Section
Articles
Abstract viewed = 128 times
pdf downloaded = 139 times