Boosting strawberry yield and fruit sweetness with humic substances and biofertilizer in soilless cocopeat-based culture

  • Reginawanti Hindersah Department of Soil Science, Faculty of Agriculture, Universitas Padjajaran, Sumedang, Indonesia
  • Ratna Ayu Permata Aini Department of Soil Science, Faculty of Agriculture, Universitas Padjajaran, Sumedang, Indonesia
  • Mieke Rochimi Setiawati Department of Soil Science, Faculty of Agriculture, Universitas Padjajaran, Sumedang, Indonesia
  • Tualar Simarmata Department of Soil Science, Faculty of Agriculture, Universitas Padjajaran, Sumedang, Indonesia
  • Diky Indrawibawa CV Bumi Agro Technology, Lembang, West Bandung, Indonesia
  • Masako Akutsu Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
Keywords: soilless strawberry cultivation, humic and fulvic acids, biofertilizer application, nitrogen-fixing bacteria, cocopeat-based substrate

Abstract

Farmers usually apply more chemical fertilizers to enhance the yield of strawberries in soilless culture. Humic substances and biofertilizers are now considered essential nutrient sources in sustainable agriculture. The objective of the greenhouse experiment was to observe the effect of humic and fulvic acid (humic substances), and biofertilizer on root growth, nitrogen (N) and phosphor (P) of the growing media, populations of N-fixing and P-solubilizing bacteria in the root zone, and yield of strawberry grown in the cocopeat-based substrate. The experiment was set up in a randomized block design consisting of seven treatments and four replications. The treatments included humic acid, fulvic acid, and biofertilizer in single or combined applications. All data were subjected to analysis of variance and followed by Duncan's Multiple Range Test with p<0.05. All treatments received 50% of the recommended dose of NPK fertilizer. The results showed that all treatments did not affect root length and dry weight. Mixed application of humic substances and biofertilizer together with NPK fertilizer increased total N and P as well as the population of N-fixing bacteria in the growth substrate. Still, P-solubilizing bacteria did not grow in the cocopeat-based substrate. Moreover, mixing humic substances and biofertilizer increased strawberries' fruit yield and sweetness levels.

Downloads

Download data is not yet available.

References

Abobatta, F., & Abd Alla, M.A. (2023). Role of phosphates fertilizers in sustain horticulture production: Growth and productivity of vegetable crops. Asian Journal of Agricultural Research, 2, 17(1):1-7. DOI: 10.3923/ajar.2023.1.7

Aghaeifard, F., Babalar, M., Fallahi, E., & Ahmadi, A. (2016). Influence of humic acid and salicylic acid on yield, fruit quality, and leaf mineral elements of strawberry (Fragaria × Ananassa duch) cv. Camarosa. Journal of Plant Nutrition, 39(13), 1821-1829. http://dx.doi.org/10.1080/01904167.2015.1088023

Association of Official Analytical Chemists (AOAC). (2012). official methods of analysis of aoac international. 19th edition. gaithersburg, maryland.

Baldani, J. I., Reis, V. M., Videira, S. S. Boddey, L. H., & Baldani, V. L. D. (2014). The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil, 384, 413–431. https://doi.org/10.1007/s11104-014-2186-6

Ben-David A., & Davidson, C. E. (2014). Estimation method for serial dilution experiments. Journal of Experimental Methods, 107, 214-221. https://doi.org/10.1016/j.mimet.2014.08.023

Bhagat, P., & Panigrahi, H. (2020). Effect of bio-fertilizers on growth, yield and quality of strawberry (Fragaria x ananassa Duch.) cv. Nabila under net tunnel. The Pharma Innovation Journal, 9(1): 442-446. https://www.thepharmajournal.com/archives/2020/vol9issue1/PartH/9-1-38-229.pdf

Bilong, E.G., Abossolo‑Angue, M., Nanganoa, L.T., Anaba, B.D., Ajebesone, F.N., Madong, B.A., & Bilong, P. (2022). Organic manures and inorganic fertilizers efects on soil properties and economic analysis under cassava cultivation in the southern Cameroon. Scientifc Reports, 12, 20598. https://doi.org/10.1038/s41598-022-17991-6

Bouizgarne, B. (2022). Phosphate-solubilizing actinomycetes as biofertilizers and biopesticides: bioformulations for sustainable agriculture (pp 407-428). Springer. https://doi.org/10.1007/978-981-16-4843-4_13

Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383, 3-41. https://doi.org/10.1007/s11104-014-2131-8

Canellas, L. P., & Olivares, F. L. (2014). Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technology in Agriculture, 1, 1-3. https://doi.org/10.1186/2196-5641-1-3

Cruz, J.A., Avenson, T.J., Kanazawa, A., Takizawa, K., Edwards, G.E., Kramer, D.M. (2005). Plasticity in light reactions of photosynthesis for energy production and photoprotection. Journal of Experimental Botany, 56, 395-406. https://doi.org/10.1093/jxb/eri022

Cruz, S. M-D. L., González-Fuentes, J. A., Robledo-Olivo, A., Mendoza-Villarreal, R., Hernández-Pérez, A., Dávila-Medina, M. D., & Alvarado-Camarillo, D. (2022). Humic substances and rhizobacteria enhance the yield, physiology and quality of strawberries. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 12578. https://doi.org/10.15835/nbha50112578

De Melo, B.A.G., Motta, F.L., & Santan, M.H.A. (2016). Humic acids: Structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering: C, 62(1):967-974. https://doi.org/10.1016/j.msec.2015.12.001

Egamberdieva, D., Wirth, S.J., Alqarawi, A.A., Abd_Allah, E.F., & Hashem, A. (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Frontier in Microbiology, 8, 2104. doi: 10.3389/fmicb.2017.02104

Fendrihan, S., Constantinescu, F., Sicuia, O., & Sorina, D. (2018). Azospirillum strains as biofertilizers and biocontrol agents-a practical review type (method/approach). Journal of Advances in Agriculture, 7(3), 2-18. http://dx.doi.org/10.24297/jaa.v7i3.6324

Fitriatin, B., Fabira F., Hindersah, R., Setiawati, M. R., & Simarmata, T., Ningtyas, D. M., & Suryatmana, P. (2020). Biochemical activity and bioassay on maize seedling of selected indigenous phosphate-solubilizing bacteria isolated from the acid soil ecosystem. Open Agriculture, 5(1), 300-304. http://dx.doi.org/10.1515/opag-2020-0036

Fukami, J., Ollero, F.J., Megías, M., & Hungria, M. (2017). Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express, 7, 153. doi: 10.1186/s13568-017-0453-7

Giampieri, F., Alvarez-Suarez, J. M., & Battino, M. (2014). Strawberry and human health: effects beyond antioxidant activity. Journal of Agricultural and Food Chemistry, 62(18), 3867–3876. https://doi.org/10.1021/jf405455n

Haghighi, M., & Da Silva, J. A. T. (2013). Amendment of hydroponic nutrient solution with humic acid and glutamic acid in tomato (Lycopersicon esculentum Mill.) culture. Soil Science and Plant Nutrition, 59(4), 642-648. http://dx.doi.org/10.1080/00380768.2013.809599

Hindersah, R., Suryatmana, P., Setiawati, M. R., & Fitriatin, B. D. (2017). Effect of liquid biofertilizer on soil nitrogen and phosphorous, and yield of choy sum (Brassica Rapa L.) growing pot culture. International Journal of Research in Engineering and Science, 5(11), 61-64. https://www.ijres.org/papers/Volume%205/Vol5-Iss2/Version-1/J5216166.pdf

Hindersah, R., Kalay, A. M., Kesaulya, H., & Suherman, C. (2021a). The nutmeg seedlings growth under pot culture with biofertilizers inoculation. Open Agriculture, 6(1), 1-10. https://doi.org/10.1515/opag-2021-0215

Hindersah, R., Rahmadina, I., Fitriatin, B.N., Setiawati, M.R., & Indrawibawa, D. (2021b). Microbes-coated urea for reducing urea dose of strawberry early growth in soilless media. Jordan Journal of Biological Science, 14(3), 593-599. http://doi.org/10.54319/jjbs/140328

Hindersah, R., Purba, P.S.J., Cahyaningrum, D. N., Nurbaity, A., Kamaluddin, N. N., & Akutsu, M. (2022). Evaluation of strawberry seedling growth in various planting media amended with biofertilizer. KnE Life Sciences, 2022, 358–367. https://dx.doi.org/10.18502/kls.v7i3.11144

Kalay, A. M., Sesa, A., Siregar, A., & Talahaturuson, A. (2019). Efek aplikasi pupuk hayati terhadap populasi mikroba dan ketersediaan unsur hara makro pada tanah entisol. Agrologia, 8(2), 63-70. http://dx.doi.org/10.30598/a.v8i2.1011

Kamaluddin, N. N., Hindersah, R., Cahayaningrum, D. N., Purba, P. S. J., Wibawa, D. I., & Setiawati, M. R. (2022). Karakterisasi media tanam dari kombinasi cocopeat dan pupuk kandang ayam. Soil Rens, 20(1), 16-24. https://doi.org/10.24198/soilrens.v20i1.41352

Mali, G.V., & Bodhankar, M.G. (2009). Antifungal and phytohormone production potential of Azotobacter chroococcum isolates from groundnut (Arachis hypogea L.) rhizosphere. Asian Journal of Experimental Science, 23(1), 293-297. http://www.ajesjournal.com/PDFs/09-1/43.%20Antifungal%20And%20Phytohormone.pdf

Manoharan, M. J., Shalini, D., Abitha, B., Allen, J. H., & Narendrakumar, G. (2018). Soil extract calcium phosphate media for screening of phosphate-solubilizing bacteria. Agriculture and Natural Resources, 52(3), 305-308. https://doi.org/10.1016/j.anres.2018.09.014

Nardi, S., Muscolo, A., Vaccaroa, S., Baiano, S., Spaccini, R., & Piccolo, A. (2007). Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and krebs cycle in maize seedlings. Soil Biol Biochem, 39, 3138–3146. http://dx.doi.org/10.1016/j.soilbio.2007.07.006

Nardi, S., Schiavon, M., & Francioso, O. (2021). Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules, 26(8), 2256. http://dx.doi.org/10.3390/molecules26082256

Neri, D., Lodolini, E. M., Savini, G., Sabbatini, P., Bonanomi, G., & Zucconi, F. (2002). Foliar application of humic acids on strawberry (cv onda). in tagliavini, m. et al. (eds). Acta Horticulturae. 594, 297-302. https://doi.org/10.17660/ActaHortic.2002.594.35

Palupi, N.E., Aji, T.G., Kurnilasari, D., & Sutopo. (2017). Efektivitas dosis dan aplikasi pupuk npk majemuk pada fase vegetatif pada tanaman strawberry (Fragaria x ananassa Duchesne). Agrisaintifika, 1(2):109-116. https://journal.univetbantara.ac.id/index.php/agrisaintifika/article/view/46/45

Parađiković, N., Teklić, T., Zeljković, S., Lisjak, M., & Špoljarević, M. (2019). Biostimulants research in some horticultural plant species—a review. Food and Energy Security, 8(2), e00162. https://doi.org/10.1002/fes3.162

Pande, A., Pandey, P., Mehra, S., Singh, M., & Kaushik, S. (2017). Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. Journal of Genetic Engineering and Biotechnology, 15, 379-391. http://dx.doi.org/10.1016/j.jgeb.2017.06.005

Patel, T., & Saraf, M. (2017). Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. Plant-Microorganism Interactions, 12(1), 480-487. https://doi.org/10.1080/17429145.2017.1392625

Ramalakshmi, A., Iniyakumar, M., & Raj, S. A. (2008). Influence of biofertilizers on soil physico-chemical and biological properties during cropping period. Asian Journal of Bio Science, 3(2), 348-351. http://researchjournal.co.in/online/AJBS/AJBS%203(2)/3_A-348-351.pdf

Sangiorgio, D., Cellini, A., Spinelli, F., & Donati, I. (2023). Promoting strawberry (Fragaria × ananassa) stress resistance, growth, and yield using native bacterial biostimulants. Agronomy, 13(2), 529; https://doi.org/10.3390/agronomy13020529.

Sankaralingam, S., Eswaran, S., Balakan, B., Sundaram, M., & Shankar, T. (2014). Screening and growth characterization of phosphate solubilizing bacterium pseudomonas aeruginosa. Advances in Environmental Biology, 8(13), 673-680. http://www.aensiweb.com/AEB/

Setiawati, M. R., Fitriatin, B. F., Herdiyantoro, D., Bustomi, T., Khumairah, F. H., Fauziah, N. O., & Simarmata, T. (2023). The role of halotolerant N-fixing bacteria on rice agronomic traits on saline soils by path analysis. Plant, Soil and Environment, 69,(1), 10–17. https://pse.agriculturejournals.cz/corproof.php?tartkey=pse-000003-0271

Shah, Z. H., Rehman, H. M., Akhtar, T., Alsamadany, H., Hamooh, B. T., Mujtaba, T., Daur, I., Al Zahrani, Y., Alzahrani, H. A. S., Ali, S., Yang, S. H., & Chung, G. (2018). Humic substances: determining potential molecular regulatory processes in plants. Frontiers in Plant Science, 9, 1-12. https://doi.org/10.3389/fpls.2018.00263

Sharon, J. A., Hathwaik, L.T., Glenn, G. M., Imam, S. H., and Lee, C. C. (2016). Isolation of efficient phosphate solubilizing bacteria capable of enhancing tomato plant growth. Journal of Soil Science and Plant Nutrition, 16(2), 525-536. http://dx.doi.org/10.4067/S0718-95162016005000043

Shen, H., Dong, S., Xiao, J., & Zhi, Y. (2022). Effects of N and P enrichment on plant photosynthetic traits in alpine steppe of the Qinghai-Tibetan Plateau. BMC Plant Biology, 22, 396. https://doi.org/10.1186/s12870-022-03781-9

Sumarlan, S. H., Susilo, B., Mustofa, A., & Francesca, M. M. 2018. Ekstraksi senyawa antioksidan dari buah strawberry (Fragaria X Ananassa) dengan menggunakan metode microwave assisted extraction (kajian waktu ekstraksi dan rasio bahan dengan pelarut). Jurnal Keteknikan Pertanian Tropis dan Biosistem. 6(1), 40-51. https://jkptb.ub.ac.id/index.php/jkptb/article/view/444/378

Sun, H., Jiang, S., Jiang, C., Chuanfu, W., Ming, G., & Qunhui, W. (2021). A review of root exudates and rhizosphere microbiome for crop production. Environmental Science and Pollution Research, 28, 54497–54510. https://doi.org/10.1007/s11356-021-15838-7

Suwandi, Sopha, G.A., Lukman, L., & Yufdy, M.P. (2017). Efektivitas pupuk hayati unggulan nasional terhadap pertumbuhan dan hasil bawang merah. Jurnal Hortikultura, 27(1), 23-34. DOI: http://dx.doi.org/10.21082/jhort.v27n1.2017.p23-34

Ugur, A., Demirtas, B., Caglar, S., Zambi, O., & Turkmen, M. (2013). Effect of Humic Acid Application on Yield and Quality in Green Vegetables. In Blesic, M. (Ed). Proceedings of 24th International Scientific-Expert Conference of Agriculture and Food Industry – Sarajevo, Pp 381-385. https://www.researchgate.net/publication/282973214_effect_of_humic_acid_application_on_yield_and_quality_in_green_vegetables

Veazie, P., Cockson, P., Henry, J. Perkins-Veazie, P., & Whipker, B. (2020). Characterization of nutrient disorders and impacts on chlorophyll and anthocyanin concentration of Brassica rapa var. Chinensis. Agriculture, 10(10), 461. https://doi.org/10.3390/agriculture10100461

Wang, Z., Zhang, H., Liu, L., Li, S., Xie, J., Xue, X., & Jiang, Y. (2022). Screening of phosphate-solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion. BMC Microbiology, 22, 296. https://doi.org/10.1186/s12866-022-02715-7

Wu, Y., Li, L., Li, M., Zhang, M., Sun, H., & Sigrimis, N. (2020). Optimal fertigation for high yield and fruit quality of greenhouse strawberry. PLoS ONE, 15(4), e0224588. https://doi.org/10.1371/journal.pone.0224588

Yigit, F., & Dikilitas, M. (2008). Effect of humic acid applications on the root-rot diseases caused by fusarium spp. on tomato plants. Plant Pathology Journal, 7(2), 179-182. http://dx.doi.org/10.3923/ppj.2008.179.182

Zandonadi, D. B., Santos, M. P., Caixeta, L. S., Marinho, E. B., Peres, L. E. P., & Facanha, A. R. (2016). Plant proton pumps as markers of biostimulant action. Science in Agriculture, 73, 24–28. https://doi.org/10.1590/0103-9016-2015-0076

Zhang, P., Zhang, H., Wu, G., Chen, X., Gruda, N., Li. X., Dong, J., & Duan, Z. (2021). Dose-dependent application of straw-derived fulvic acid on yield and quality of tomato plants grown in a greenhouse. Frontier in Plant Science, 12, 736613. http://dx.doi.org/10.3389/fpls.2021.736613

Published
2023-08-05
How to Cite
Hindersah, R., Aini, R. A. P., Setiawati, M. R., Simarmata, T., Indrawibawa, D., & Akutsu, M. (2023). Boosting strawberry yield and fruit sweetness with humic substances and biofertilizer in soilless cocopeat-based culture. Jurnal Ilmiah Pertanian, 20(3), 247-257. https://doi.org/10.31849/jip.v20i3.13242
Section
Original Articles
Abstract viewed = 176 times
PDF (EN) downloaded = 173 times