Improving the chemical quality of sandy-textured soil and shallot (Allium cepa L.) yields using biochar and clay

  • Raesa Sakinah Siregar Department of Agroecotechnology, Faculty of Agriculture, Universitas Malikussaleh, Aceh, Indonesia
  • Khusrizal Department of Agroecotechnology, Faculty of Agriculture, Universitas Malikussaleh, Aceh, Indonesia
  • Yusra Department of Agroecotechnology, Faculty of Agriculture, Universitas Malikussaleh, Aceh, Indonesia
  • Nasruddin Department of Agroecotechnology, Faculty of Agriculture, Universitas Malikussaleh, Aceh, Indonesia
Keywords: rice husk biochar, soil fertility, soil fraction, shallot crop, clay

Abstract

Sandy soils are known as low-fertility soils due to the soil's limited physical, chemical, and biological properties. Rice husk biochar and clay soil are organic and inorganic materials that can improve soil quality levels. This study aims to improve the chemical quality of sandy soil and shallot crop yields using rice husk biochar and clay. The study was arranged using a factorial randomized block design, with rice husk biochar as the first factor and soil clay as the second factor. Rice husk biochar consisted of four levels, and three levels for clay. The chemical properties of the soil observed included pH, organic-C, cation exchange capacity (CEC), available-P (av-P), and exchangeable-K (K-ex). The yield of shallots was measured as the number of tubers and each tuber's wet and dry weight. The result showed that soil pH tended to vary and decreased from 6.9 in the initial soil to 6.4. Organic-C content increased from 0.11% initial soil to 0.31% and CEC from 6.80 cmolc/kg initial soil to 19.60 cmolc/kg. Av-P and K-ex levels varied and increased, where av-P increased from 97.65 mg/kg of the initial soil to 105.15 mg/kg, and K-ex levels increased from 0.20 cmolc/kg of the initial soil to 0.65 cmolc/kg. The combination of rice husk biochar and clay had no significant effect on the shallot yield.  Rice husk biochar and clay could improve the chemical quality of sandy-textured soil. Both rice husk biochar and clay independently increase shallot yields.

Downloads

Download data is not yet available.

References

Abdarah, A., Sukartono, S., Santoso, B. B., Kusnarta, I., & Kisman, K. (2021). Effect of Biochar and Nitrogen on Growth and Yield of Shallots (Allium Ascalanicum L.). Prisma Sains: Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram, 9(2), 378-388. https://doi.org/10.33394/j-ps.v9i2.4296

Alaily, F. (1987). Genesis of cracks in sandy soils of central east Sahara: a hypothesis. Catena, 14(4), 345-357. https://doi.org/10.1016/0341-8162(87)90026-9

Alemayehu, B., & Teshome, H. (2021). Soil colloids, types and their properties: A review. Open Journal of Bioinformatics and Biostatistics, 5(1), 008-013. https://dx.doi.org/10.17352/ojbb.000010

Arulmathi, C., & Porkodi, G. (2020). Characteristics of coastal saline soil and their management: A review. Int. J. Curr. Microbiol. App. Sci, 9(10), 1726-1734. https://doi.org/10.20546/ijcmas.2020.910.209

Baiamonte, G., Crescimanno, G., Parrino, F., & De Pasquale, C. (2019). Effect of biochar on the physical and structural properties of a sandy soil. Catena, 175, 294-303. https://doi.org/10.1016/j.catena.2018.12.019

Bockheim, J., Hartemink, A. E., & Huang, J. (2020). Distribution and properties of sandy soils in the conterminous USA–A conceptual thickness model, and taxonomic analysis. Catena, 195, 104746. https://doi.org/10.1016/j.catena.2020.104746

Bruand, A., Hartmann, C., & Lesturgez, G. (2005). Physical properties of tropical sandy soils: A large range of behaviours. Paper presented at the Management of Tropical Sandy Soils for Sustainable Agriculture. A holistic approach for sustainable development of problem soils in the tropics., Khon Kaen, Thailand.

Carvalho, M., Madari, B., Bastiaans, L., Van Oort, P., Leal, W., Heinemann, A., Da Silva, M., Maia, A., Parsons, D., & Meinke, H. (2016). Properties of a clay soil from 1.5 to 3.5 years after biochar application and the impact on rice yield. Geoderma, 276, 7-18. https://doi.org/10.1016/j.geoderma.2016.04.013

Dias, B. O., Silva, C. A., Higashikawa, F. S., Roig, A., & Sánchez-Monedero, M. A. (2010). Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification. Bioresource technology, 101(4), 1239-1246. https://doi.org/10.1016/j.biortech.2009.09.024

Djajadi, D., Heliyanto, B., & Hidayah, N. (2012). Changes of physical properties of sandy soil and growth of physic nut (Jatropha curcas L.) due to addition of clay and organic matter. AGRIVITA, Journal of Agricultural Science, 33(3), 245-250. http://doi.org/10.17503/agrivita.v33i3.75

Ebido, N. E., Edeh, I. G., Unagwu, B. O., Nnadi, A. L., Ozongwu, O. V., Obalum, S. E., & Igwe, C. A. (2021). Rice-husk biochar effects on organic carbon, aggregate stability and nitrogen-fertility of coarse-textured Ultisols evaluated using Celosia argentea growth. SAINS TANAH-Journal of Soil Science and Agroclimatology, 18(2), 177-187. https://doi.org/10.20961/stjssa.v18i2.56330

FAO. (2021a). Standard operating procedure for soil available phosphorus. Roma: Food and Agriculture Organiation.

FAO. (2021b). Standard operating procedure for soil pH determination. Roma: Food and Agriculture Organitation.

Fu, G., Qiu, X., Xu, X., Zhang, W., Zang, F., & Zhao, C. (2021). The role of biochar particle size and application rate in promoting the hydraulic and physical properties of sandy desert soil. Catena, 207, 105607. https://doi.org/10.1016/j.catena.2021.105607

Ghorbani, M., Asadi, H., & Abrishamkesh, S. (2019). Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. International Soil and Water Conservation Research, 7(3), 258-265. https://doi.org/10.1016/j.iswcr.2019.05.005

Glaser, B., & Lehr, V.-I. (2019). Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Scientific Reports, 9(1), 9338

Gondek, K., Mierzwa-Hersztek, M., Kopeć, M., Sikora, J., Głąb, T., & Szczurowska, K. (2019). Influence of biochar application on reduced acidification of sandy soil, increased cation exchange capacity, and the content of available forms of K, Mg, and P. Pol. J. Environ. Stud, 28(1), 1-9

Gu, W., Wang, Y., Feng, Z., Wu, D., Zhang, H., Yuan, H., Sun, Y., Xiu, L., Chen, W., & Zhang, W. (2022). Long-Term Effects of Biochar Application With Reduced Chemical Fertilizer on Paddy Soil Properties and japonica Rice Production System. Frontiers in Environmental Science, 10, 742

Gunawan, E., Perwita, A. D., Sukmaya, S. G., Darwis, V., & Ariningsih, E. (2021). The competitiveness analysis of shallot in Indonesia: A Policy Analysis Matrix. Plos one, 16(9), e0256832

Hajek, B., Adams, F., & Cope Jr, J. (1972). Rapid determination of exchangeable bases, acidity, and base saturation for soil characterization. Soil Science Society of America Journal, 36(3), 436-438

Haojie, H., Qing, X., Qin, Z., Caixia, Z., & Zhiliang, Z. (2020). Research progress of biochar on agricultural soil improvement. Paper presented at the E3S Web of Conferences.

Hargreaves, P. (2015). Soil Texture and pH Effects on Potassium and Phosphorus Availability.

Hong, S., Gan, P., & Chen, A. (2019). Environmental controls on soil pH in planted forest and its response to nitrogen deposition. Environmental Research, 172, 159-165. https://doi.org/10.1016/j.envres.2019.02.020

Huang, J., & Hartemink, A. E. (2020). Soil and environmental issues in sandy soils. Earth-Science Reviews, 208, 103295

Jaskulska, I., Lemanowicz, J., Breza-Boruta, B., Siwik-Ziomek, A., Radziemska, M., Dariusz, J., & Białek, M. (2020). Chemical and biological properties of sandy loam soil in response to long-term organic–mineral fertilisation in a warm-summer humid continental climate. Agronomy, 10(10), 1610

Jaya, E. R., Situmeang, Y. P., & Andriani, A. A. S. P. R. (2021). Effect of Biochar from Urban Waste and Eco-enzymes on Growth and Yield of Shallots (Allium ascalonicum, L). SEAS (Sustainable Environment Agricultural Science), 5(2), 105-113

Jian, Z., Lei, L., Ni, Y., Xu, J., Xiao, W., & Zeng, L. (2022). Soil clay is a key factor affecting soil phosphorus availability in the distribution area of Masson pine plantations across subtropical China. Ecological Indicators, 144, 109482. https://doi.org/10.1016/j.ecolind.2022.109482

Khusrizal. (2009). Karakteristik, klasifikasi, dan arahan pengelolaan tanah terpengaruh tsunami di Nanggroe Aceh Darussalam (Studi Kasus Aceh Utara). . (Disertasi), Universitas Sumatera Utara. 188p.

Khusrizal, Basyaruddin, Rahayu, M. S., Pradipta, R., & Nasruddin. (2021). Impact of heated, acidified volcanic ash and manures on properties of marginal soil and growth of soybean. Indian Journal of Agricultural Research, 55(2), 202-206

Knoblauch, C., Priyadarshani, S. R., Haefele, S. M., Schröder, N., & Pfeiffer, E. M. (2021). Impact of biochar on nutrient supply, crop yield and microbial respiration on sandy soils of northern Germany. European Journal of Soil Science, 72(4), 1885-1901

Liu, X. H., & Zang, X. C. (2012). Effect of biochar on pH of alkaline soils in the loess plateau: results from incubation experiments. International Journal of Agriculture & Biology, 14(5)

Liu, Y., Yan, M., Na, K., Hwang, J., Shin, S., Yin, L., Deng, X., & Wang, S. (2022). The New Soil Conditioner DewEco Could Improve Sandy Soil’s Properties for Efficient Maize Growth. Agronomy, 12(5), 1124

Muchtar, M., & Soelaeman, Y. (2018). Effects of green manure and clay on the soil characteristics, growth and yield of peanut at the coastal sandy soil. Journal of Tropical Soils, 15(2), 139-146

Nelson, D. W., & Sommers, L. E. (1996). Total Carbon, Organic Carbon, and Organic Matter. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston & M. E. Sumner (Eds.), Methods of Soil Analysis (pp. 961-1010).

Nesic, L. L., Vasin, J., Belic, M., Ciric, V., Gligorijevic, J., Milunovic, K., & Sekulic, P. (2015). The colloid fraction and cation echange capacity in the soils of Vojvodina, Serbia. Ratarstvo i povrtarstvo, 52, 18-23. 10.5937/ratpov52-7720

Nurida, N. L., Rachman, A., & Sutomo, S. (2015). Biochar pembenah tanah yang potensial: Balai Penelitian dan Pengembangan Pertanian Press, Kementerian Pertanian, Jakarta. 61p.

Oswaldus, O., Widowati, W., & Karamina, H. (2022). Impact of Biochar Use After Five Years in Vertisol and NPK Fertilization on Yield of Shallot (Allium ascalonicum L.). Jurnal Budidaya Pertanian, 18(1), 35-41

Ozores-Hampton, M., Stansly, P. A., & Salame, T. P. (2011). Soil chemical, physical, and biological properties of a sandy soil subjected to long-term organic amendments. Journal of Sustainable Agriculture, 35(3), 243-259

Prakongkep, N., Gilkes, R., Wisawapipat, W., Leksungnoen, P., Kerdchana, C., Inboonchuay, T., Delbos, E., Strachan, L.-J., Ariyasakul, P., & Ketdan, C. (2020). Effects of biochar on properties of tropical sandy soils under organic agriculture. Journal of Agricultural Science, 13(1), 1-17

Rahayu, R., Syamsiyah, J., Cahyani, V. R., & Fauziah, S. K. (2019). The effects of biochar and compost on different cultivars of shallots (Allium ascalonicum L.) growth and nutrient uptake in sandy soil under saline water. Sains Tanah-Journal of Soil Science and Agroclimatology, 16(2), 216-228

Rendana, M., Idris, W. M. R., Rahim, S. A., Rahman, Z. A., Lihan, T., & Jamil, H. (2019). Effects of organic amendment on soil organic carbon in treated soft clay in paddy cultivation area. Sains Malaysiana, 48(1), 61-68

Sarwono, R. (2016). Biochar Sebagai Penyimpan Karbon, Perbaikan Sifat Tanah, dan Mencegah Pemanasan Global: Tinjauan. Jurnal Kimia Terapan Indonesia, 18(01), 79-90

Shi, R.-y., Hong, Z.-n., Li, J.-y., Jiang, J., Baquy, M. A.-A., Xu, R.-k., & Qian, W. (2017). Mechanisms for increasing the pH buffering capacity of an acidic Ultisol by crop residue-derived biochars. Journal of Agricultural and food chemistry, 65(37), 8111-8119

Sinaga, R., Waluyo, N., Rahayu, A., & Rosliani, R. (2021). Growth and yield of shallots (Allium cepa var aggregatum L.) under different seed bulbs storage period. Paper presented at the E3S Web of Conferences.

Singh, H., Northup, B. K., Rice, C. W., & Prasad, P. V. (2022). Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar, 4(1), 8

Sulaeman, Y., & Sukarman. (2021). Peningkatan Produktivitas Tanah Berpasir. In W. Adhi & E. Tarma (Eds.), Pengelolaan Lahan Berkarakter Khusus (pp. 349). Jakarta: IAARD PRESS.

Sulistyaningsih, E., Pangestuti, R., & Rosliani, R. (2020). Growth and yield of five prospective shallot selected accessions from true seed of shallot in lowland areas. Ilmu Pertanian (Agricultural Science), 5(2), 92-97

Sun, Z., Hu, Y., Shi, L., Li, G., Han, J., Pang, Z., Liu, S., Chen, Y., & Jia, B. (2022). Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil. Plant, Soil and Environment, 68(6), 272-289

Supriyadi, S., Widjajani, B. W., & Murniyanto, E. (2022). The Effect of Rice Husk Biochar and Cow Manure on Some Soil Characteristics, N and P Uptake and Plant Growth of Soybean in Alfisol. Journal of Tropical Soils, 27(2), 59-66

Surdianto, Y., Sutrisna, N., Basuno, & Solihin. (2015). Panduan teknis cara membuat arang sekam padi. Bandung: Balai Pengkajian Teknologi Pertanian Jawa Barat.

Tahir, S., & Marschner, P. (2016). Clay amendment to sandy soil—effect of clay concentration and ped size on nutrient dynamics after residue addition. Journal of Soils and Sediments, 16, 2072-2080

Tahir, S., & Marschner, P. (2017). Clay addition to sandy soil—influence of clay type and size on nutrient availability in sandy soils amended with residues differing in C/N ratio. Pedosphere, 27(2), 293-305

Tenaya, I. M. N. (2015). Pengaruh interaksi dan nilai interaksi pada percobaan faktorial. Agrotrop, 5(1), 9-20

Thi, D. P., Hang, N. N. T., Viet, O. T., Van, L. N., Viet, A. N., Lan, P. D. T., & Van, N. V. (2021). Sandy soil reclamation using biochar and clay-rich soil. Journal of Ecological Engineering, 22(6), 26-35

Ulén, B., & Etana, A. (2014). Phosphorus leaching from clay soils can be counteracted by structure liming. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 64(5), 425-433

Wang, L., Xue, C., Nie, X., Liu, Y., & Chen, F. (2018). Effects of biochar application on soil potassium dynamics and crop uptake. Journal of Plant Nutrition and Soil Science, 181(5), 635-643

Yang, W., Shang, J., Li, B., & Flury, M. (2020). Surface and colloid properties of biochar and implications for transport in porous media. Critical Reviews in Environmental Science and Technology, 50(23), 2484-2522

Yang, Y., Sun, K., Han, L., Chen, Y., Liu, J., & Xing, B. (2022). Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, aging and soil clay content. Soil Biology and Biochemistry, 169, 108657

Yost, J. L., & Hartemink, A. E. (2019). Soil organic carbon in sandy soils: A review. Advances in agronomy, 158, 217-310

Yu, J., Li, Y., Han, G., Zhou, D., Fu, Y., Guan, B., Wang, G., Ning, K., Wu, H., & Wang, J. (2014). The spatial distribution characteristics of soil salinity in coastal zone of the Yellow River Delta. Environmental Earth Sciences, 72, 589-599

Zavalloni, C., Alberti, G., Biasiol, S., Delle Vedove, G., Fornasier, F., Liu, J., & Peressotti, A. (2011). Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study. Applied Soil Ecology, 50, 45-51

Zhang, Y., Wang, J., & Feng, Y. (2021). The effects of biochar addition on soil physicochemical properties: A review. Catena, 202, 105284

Zhao, R., Coles, N., Kong, Z., & Wu, J. (2015). Effect of aged and fresh biochars on soil acidity under different incubation condition. Soil and Tillage Research, 146, 133-138. https://doi.org/10.1016/j.still.2014.10.014

Published
2023-07-12
How to Cite
Siregar, R. S., Khusrizal, Yusra, & Nasruddin. (2023). Improving the chemical quality of sandy-textured soil and shallot (Allium cepa L.) yields using biochar and clay. Jurnal Ilmiah Pertanian, 20(2), 177-188. https://doi.org/10.31849/jip.v20i2.13760
Section
Original Articles
Abstract viewed = 138 times
PDF (ID) downloaded = 196 times