A comparative study on pesticide residue profiles in locally grown rice from conventional and sustainable agricultural methods

  • Indra Purnama Department of Agrotechnology, Faculty of Agriculture, Universitas Lancang Kuning, Pekanbaru, Indonesia https://orcid.org/0000-0002-9911-3923
  • Farag M. Malhat Central Agricultural Pesticide Laboratory, Agriculture Research Center, Giza, Egypt
  • Anisa Mutamima Department of Chemical Engineering, Faculty of Engineering, Universitas Riau, Pekanbaru, Indonesia
  • Fikratul Ihsan Department of Agricultural Product Technology, Faculty of Agriculture, Universitas Lancang Kuning, Pekanbaru, Indonesia
  • Amalia Department of Agribusiness, Faculty of Agriculture, Universitas Lancang Kuning, Pekanbaru, Indonesia
Keywords: pesticide residue, rice cultivation, sustainable agriculture, environmental impact, food safety

Abstract

Amid escalating concerns about pesticide residues in agricultural product, this study conducts a meticulous comparative analysis of pesticide residue profiles in locally grown rice, aiming to contribute essential insights for informed decision-making in agriculture. The overarching problem addressed involves identifying pesticides in rice from conventional and sustainable farming and understanding their potential environmental and health implications on food safety. Utilizing HPLC/MS-MS, the research discerns a notable absence of over 500 pesticide types in rice cultivated according to good agricultural practices (GAP). Conversely, rice from fields deviating from GAP guidelines reveals the presence of 7 pesticide active ingredients, with 2 exceeding globally established residue limits by twice the recommended amount. Notably, bifenthrin and tebuconazole, uncommonly used in the last one years, are identified. This study underscores the urgency of adhering to sustainable agricultural practices for the safety and quality of rice, offering critical insights for future research. It not only contributes to current knowledge but also emphasizes the global necessity of safe agricultural practices to safeguard our food supply.

Downloads

Download data is not yet available.

References

Ali, S., Ullah, M. I., Sajjad, A., Shakeel, Q., & Hussain, A. (2021). Environmental and health effects of pesticide residues. Sustainable Agriculture Reviews 48: Pesticide Occurrence, Analysis and Remediation Vol. 2 Analysis, 311-336. https://doi.org/10.1007/978-3-030-54719-6_8

Álvarez, M., Du Mortier, C., & Fernández Cirelli, A. (2013). Behavior of insecticide chlorpyrifos on soils and sediments with different organic matter content from Provincia de Buenos Aires, República Argentina. Water, Air, & Soil Pollution, 224, 1-6. https://doi.org/10.1007/s11270-013-1453-0

Andina, L. (2015). Analisis Residu Endosulfan, Endrin, Dieldrin, Aldrin, P, P-Ddt, dan Heptaklor Pada Beras Varietas Siam Unus di Kalimantan Selatan. Jurnal Pharmascience, 2(2), 103-108. https://ppjp.ulm.ac.id/journal/index.php/pharmascience/article/view/5828

Ardiwinata, A. N., & Nursyamsi, D. (2012). Residu pestisida di sentra produksi padi di Jawa Tengah. Jurnal Pangan, 21(1), 39-58. https://jurnalpangan.com/index.php/pangan/article/view/103/90

Badawi, N., Rosenbom, A. E., Jensen, A. M., & Sørensen, S. R. (2016). Degradation and sorption of the fungicide tebuconazole in soils from golf greens. Environmental Pollution, 219, 368-378. https://doi.org/10.1016/j.envpol.2016.10.045

Chaulagain, B., Dufault, N., Raid, R. N., & Rott, P. (2019). Sensitivity of two sugarcane rust fungi to fungicides in urediniospore germination and detached leaf bioassays. Crop Protection, 117, 86-93. https://doi.org/10.1016/j.cropro.2018.11.014

Chèze, B., David, M., & Martinet, V. (2020). Understanding farmers' reluctance to reduce pesticide use: A choice experiment. Ecological Economics, 167, 106349. https://doi.org/10.1016/j.ecolecon.2019.06.004

Damalas CA, Eleftherohorinos IG. (2011). Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health, 8(5): 1402-1419. https://doi.org.10.3390/ijerph8051402.

FAO (2019). The Impact of Pesticide Residues on Human Health: A Global Challenge. FAO Reports.

Fan, T., Chen, X., Xu, Z., Liu, L., Shen, D., Dong, S., & Zhang, Q. (2020). Uptake and translocation of triflumezopyrim in rice plants. Journal of Agricultural and Food Chemistry, 68(27), 7086-7092. https://doi.org/10.1021/acs.jafc.9b07868

Feng, J., Yang, J., Shen, Y., Deng, W., Chen, W., Ma, Y., Chen, Z., & Dong, S. (2021). Mesoporous silica nanoparticles prepared via a one-pot method for controlled release of abamectin: Properties and applications. Microporous and Mesoporous Materials, 311, 110688. https://doi.org/10.1016/j.micromeso.2020.110688

Feng, J., Chen, W., Shen, Y., Chen, Q., Yang, J., Zhang, M., Yang, W., & Yuan, S. (2020). Fabrication of abamectin-loaded mesoporous silica nanoparticles by emulsion-solvent evaporation to improve photolysis stability and extend insecticidal activity. Nanotechnology, 31(34), 345705. https://doi.org/10.1088/1361-6528/ab91f0

Gahukar, R. T., & Das, R. K. (2020). Plant-derived nanopesticides for agricultural pest control: challenges and prospects. Nanotechnology for Environmental Engineering, 5, 1-9. https://doi.org/10.1007/s41204-020-0066-2

Ge, J., Cui, K., Yan, H., Li, Y., Chai, Y., Liu, X., Cheng, J., & Yu, X. (2017). Uptake and translocation of imidacloprid, thiamethoxam and difenoconazole in rice plants. Environmental Pollution, 226, 479-485. https://doi.org/10.1016/j.envpol.2017.04.043

Geddes, C. M., Owen, M. L., Ostendorf, T. E., Leeson, J. Y., Sharpe, S. M., Shirriff, S. W., & Beckie, H. J. (2022). Herbicide diagnostics reveal multiple patterns of synthetic auxin resistance in kochia (Bassia scoparia). Weed Technology, 36(1), 28-37. https://doi.org/10.1017/wet.2021.69

Gikas, G. D., Parlakidis, P., Mavropoulos, T., & Vryzas, Z. (2022). Particularities of fungicides and factors affecting their fate and removal efficacy: A review. Sustainability, 14(7), 4056. https://doi.org/10.3390/su14074056

Gondar, D., López, R., Antelo, J., Fiol, S., & Arce, F. (2013). Effect of organic matter and pH on the adsorption of metalaxyl and penconazole by soils. Journal of Hazardous Materials, 260, 627-633. https://doi.org/10.1016/j.jhazmat.2013.06.018

Hamid, Y., Tang, L., Wang, X., Hussain, B., Yaseen, M., Aziz, M. Z., & Yang, X. (2018). Immobilization of cadmium and lead in contaminated paddy field using inorganic and organic additives. Scientific reports, 8(1), 17839. https://doi.org/10.1038/s41598-018-35881-8

Han, Y., Mo, R., Yuan, X., Zhong, D., Tang, F., Ye, C., & Liu, Y. (2017). Pesticide residues in nut-planted soils of China and their relationship between nut/soil. Chemosphere, 180, 42-47. https://doi.org/10.1016/j.chemosphere.2017.03.138

Heidrich, D., Pagani, D. M., Koehler, A., Alves, K. D. O., & Scroferneker, M. L. (2021). Effect of melanin biosynthesis inhibition on the antifungal susceptibility of chromoblastomycosis agents. Antimicrobial Agents and Chemotherapy, 65(8), 10-1128. https://doi.org/10.1128/AAC.00546-21

Jepson, P. C., Murray, K., Bach, O., Bonilla, A. M., Neumeister, L., 'Selection of Pesticides to Reduce Human and Environmental Health Risks: A Global Guideline and Minimum Pesticides List', Lancet Planet Health 4, 2020, pp. 56-63. https://doi.org/10.1016/S2542-5196(19)30266-9

Kılıç, O., Boz, İ., & Eryılmaz, G. A. (2020). Comparison of conventional and good agricultural practices farms: A socio-economic and technical perspective. Journal of Cleaner Production, 258, 120666. https://doi.org/10.1016/j.jclepro.2020.120666

Kubiak-Hardiman, P., Haughey, S. A., Meneely, J., Miller, S., Banerjee, K., & Elliott, C. T. (2023). Identifying Gaps and Challenges in Global Pesticide Legislation that Impact the Protection of Consumer Health: Rice as a Case Study. Exposure and Health, 15(3), 597-618. https://doi.org/10.1007/s12403-022-00508-x

Kumari, D., & John, S. (2019). Health risk assessment of pesticide residues in fruits and vegetables from farms and markets of Western Indian Himalayan region. Chemosphere, 224, 162-167. https://doi.org/10.1016/j.chemosphere.2019.02.091

Li, W., Zhang, Y., Jia, H., Zhou, W., Li, B., & Huang, H. (2019). Residue analysis of tetraniliprole in rice and related environmental samples by HPLC/MS. Microchemical Journal, 150, 104168. https://doi.org/10.1016/j.microc.2019.104168

Lushchak, V.I., Matviishyn, T.M., Husak, V.V., Storey, J.M., Storey, K.B. (2018). Pesticide toxicity: A mechanistic approach. EXCLI Journal, 17, 1101-1136. https://doi.org/10.17179/excli2018-1710

Mahmood, A., & Gheewala, S. H. (2023). A comparative environmental analysis of conventional and organic rice farming in Thailand in a life cycle perspective using a stochastic modeling approach. Environmental Research, 235, 116670. https://doi.org/10.1016/j.envres.2023.116670

Malhat, F., Anagnostopoulos, C., Bakery, M., Youssef, M., El-Sayed, W., Abdallah, A., Purnama, I., & El-Salam Shokr, S. A. (2023). Investigation of the dissipation behaviour and exposure of flonicamid and imidacloprid in open field green beans under dry climatic conditions. International Journal of Environmental Analytical Chemistry, 1-13. https://doi.org/10.1080/03067319.2023.2186227

Mukherjee, I., Singh, R., & Govil, J. N. (2010). Risk assessment of a synthetic pyrethroid, bifenthrin on pulses. Bulletin of environmental contamination and toxicology, 84, 294-300. https://doi.org/10.1007/s00128-010-9940-0

Mulligan, R. A., Parikh, S. J., & Tjeerdema, R. S. (2015). Abiotic partitioning of clothianidin under simulated rice field conditions. Pest management science, 71(10), 1419-1424. https://doi.org/10.1002/ps.3946

Nurjannah, N., Yulianty, R., Marzuki, A., Kasim, S., & Djide, N. J. N. (2020). Analisis Residu Pestisida Klorpirifos Pada Beras (Oryza Sativa) Yang Berasal Kecamatan Baebunta Kabupaten Luwu Utara. Majalah Farmasi dan Farmakologi, 23(3), 109-111. https://doi.org/10.20956/mff.v23i3.9402

Prabawardani, S., Gunawan, G., & Purnomo, W. (2020). Aplikasi pestisida dan analisis residunya pada produksi beras petani di Kampung Sidomulyo Distrik Oransbari Kabupaten Manokwari Selatan. Cassowary, 3(1), 11-21. https://doi.org/10.30862/casssowary.cs.v3.i1.34

Purnama, I., & Mutamima, A. (2023). Pestisida dalam Produk Pertanian: Dampak, Analisis, dan Strategi Pengelolaan, Soega Publishing.

Purnama, I., Malhat, F., Jaikaew, P., Watanabe, H., Noegrohati, S., Rusdiarso, B., & Ahmed, M. T. (2014). Degradation profile of azoxystrobin in Andisol soil: laboratory incubation. Toxicological & Environmental Chemistry, 96(8), 1141-1152. https://doi.org/10.1080/02772248.2015.1015297

Queirós, L., Vidal, T., Nogueira, A. J., Gonçalves, F. J., & Pereira, J. L. (2018). Ecotoxicological assessment of the herbicide Winner Top and its active substances—are the other formulants truly inert?. Ecotoxicology, 27, 945-955. https://doi.org/10.1007/s10646-018-1939-z

Schoneveld, G. C., Van Der Haar, S., Ekowati, D., Andrianto, A., Komarudin, H., Okarda, B., Jelsma, I., & Pacheco, P. (2019). Certification, good agricultural practice and smallholder heterogeneity: Differentiated pathways for resolving compliance gaps in the Indonesian oil palm sector. Global Environmental Change, 57, 101933. https://doi.org/10.1016/j.gloenvcha.2019.101933

Shah, R. M., & Shad, S. A. (2020). House fly resistance to chlorantraniliprole: cross resistance patterns, stability and associated fitness costs. Pest management science, 76(5), 1866-1873. https://doi.org/10.1002/ps.5716

Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G.P.S., Handa, N., Kohli, S.K., Yadav, P., Bali, A.S., & Parihar, R.D. (2019). Worldwide Pesticide Usage and its Impacts on Ecosystem. SN Applied Sciences, 1(11), 1446. https://doi.org/10.1007/s42452-019-1485-1

Shukla, A. K., Singh, A., Banerjee, T., & Chaudhary, S. K. (2021). Impact of Agricultural Chemical Inputs on Human Health and Environment in India. Agricultural Chemical Inputs, 66. https://www.sac.org.bd/archives/publications/Agricultural%20Chemical%20Inputs.pdf

Silva, V., Mol, H. G., Zomer, P., Tienstra, M., Ritsema, C. J., & Geissen, V. (2019). Pesticide residues in European agricultural soils–A hidden reality unfolded. Science of the Total Environment, 653, 1532-1545. https://doi.org/10.1016/j.scitotenv.2018.10.441

Song, X. Y., Peng, Y. X., Gao, Y., Zhang, Y. C., Ye, W. N., Lin, P. X., Gao, C. F., & Wu, S. F. (2023). Resistance Monitoring of Nilaparvata lugens to Pymetrozine Based on Reproductive Behavior. Insects, 14(5), 428. https://doi.org/10.3390/insects14050428

Souto, A. L., Sylvestre, M., Tölke, E. D., Tavares, J. F., Barbosa-Filho, J. M., & Cebrián-Torrejón, G. (2021). Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules, 26(16), 4835. https://doi.org/10.3390/molecules26164835

Stuart, A. M., Merfield, C. N., Horgan, F. G., Willis, S., Watts, M. A., Ramírez-Muñoz, F., Jorge, S., U., Utyasheva, L., Eddleston, M., Davis, M. L., Neumeister, L., Sanou, M.R., & Williamson, S. (2023). Agriculture without paraquat is feasible without loss of productivity—lessons learned from phasing out a highly hazardous herbicide. Environmental Science and Pollution Research, 30(7), 16984-17008. https://doi.org/10.1007/s11356-022-24951-0

Taha, B., & Mohammed, R. (2021). Morphological, Histological Changes and Acetyl Cholinesterase Activity in Chicken Embryos After Exposure to Abamectin Insecticide. Journal of Life and Bio Sciences Research, 2(02), 64-69. https://doi.org/10.38094/jlbsr20248

Tudi, M., Daniel Ruan, H., Wang. L., Lyu J., Sadler, R., Connell, D., Chu, C, Phung DT. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment. Int J Environ Res Public Health, 18(3):1112. https://doi.org/10.3390/ijerph18031112.

Vryzas, Z., Ramwell, C., & Sans, C. (2020). Pesticide prioritization approaches and limitations in environmental monitoring studies: from Europe to Latin America and the Caribbean. Environment International, 143, 105917. https://doi.org/10.1016/j.envint.2020.105917

Wang, S. Q., Jia, M. A., Wang, M., Wang, X. H., LI, Y. Q., & Jie, C. H. E. N. (2019). Combined application of Trichoderma harzianum SH2303 and difenoconazole-propiconazolein controlling Southern corn leaf blight disease caused by Cochliobolus heterostrophus in maize. Journal of Integrative Agriculture, 18(9), 2063-2071. https://doi.org/10.1016/S2095-3119(19)62603-1

Wolejko E, Łozowicka B, Jabłońska-Trypuć A, Pietruszyńska M, Wydro U. (2022). Chlorpyrifos Occurrence and Toxicological Risk Assessment: A Review. Int J Environ Res Public Health, 19(19):12209. https://doi.org.10.3390/ijerph191912209.

Published
2023-12-24
How to Cite
Purnama, I., Malhat, F. M., Mutamima, A., Ihsan, F., & Amalia. (2023). A comparative study on pesticide residue profiles in locally grown rice from conventional and sustainable agricultural methods. Jurnal Ilmiah Pertanian, 20(3), 219-231. https://doi.org/10.31849/jip.v20i3.17122
Section
Original Articles
Abstract viewed = 22 times
PDF (EN) downloaded = 12 times