Optimizing winged-bean meal through oven and autoclave heating as viable alternative for plant-based aquafeed

  • Shobrina Silmi Qori Tartila Department of Aquaculture, Faculty of Agriculture, Universitas Tidar, Magelang 56116, Indonesia
  • Tholibah Mujtahidah Department of Aquaculture, Faculty of Agriculture, Universitas Tidar, Magelang 56116, Indonesia
  • Muh. Azril Department of Aquaculture, Faculty of Agriculture, Universitas Tidar, Magelang 56116, Indonesia
  • Anjali Apta Pramudita Department of Aquaculture, Faculty of Agriculture, Universitas Tidar, Magelang 56116, Indonesia
  • Lusi Septiani Department of Aquaculture, Faculty of Agriculture, Universitas Tidar, Magelang 56116, Indonesia
  • Bagas Putra Satria Department of Aquaculture, Faculty of Agriculture, Universitas Tidar, Magelang 56116, Indonesia
  • Ignatius Abel Cristanto Department of Aquaculture, Faculty of Agriculture, Universitas Tidar, Magelang 56116, Indonesia
  • Muhammad Abizar Sakti Oktavian Department of Aquaculture, Faculty of Agriculture, Universitas Tidar, Magelang 56116, Indonesia
  • Sultan Jibran Risqulloh Department of Aquaculture, Faculty of Agriculture, Universitas Tidar, Magelang 56116, Indonesia
  • Santika Dewi Astuti Department of Aquaculture, Faculty of Agriculture, Universitas Tidar, Magelang 56116, Indonesia
Keywords: alternative feeds, high protein content, proximate, trypsin, winged-bean

Abstract

Winged-bean meal can serve as a substitute for soybean meal in plant-based fish feed, despite its trypsin-inhibitor properties, which can be alleviated through heating processes. This study aimed to explore the potential of winged-bean meal subjected to different heating methods, namely oven (110 °C for 30 minutes) and autoclave (121 °C for 30 minutes), based on proximate analysis and trypsin activity. The study applied three treatments with four replications: oven heating (O), autoclave heating (A), and control (without heating, E). All data were analyzed using analysis of variance and Duncan’s multiple range test to determine the best treatment. Data were also compared to the nutrient requirements of several cultured freshwater fish in Indonesia. Heating treatments improved in vitro trypsin activity (1300 units/O and 1135 units/A vs. 835 units) but reduced protein (29.05±1.96%/A and 31.73±1.52%/O vs. 35.17±0.38%) and moisture contents. Additionally, the O treatment met the standards for aquafeed protein content (27-45%) and potentially fulfilled the protein requirements for catfish (25-40%), Nile tilapia (30-35%), and Java barb (30-32%). Therefore, oven heating presents a viable candidate as an alternative plant-based aquafeed ingredient. Nevertheless, the in vivo application of winged-bean meal as an aquafeed ingredient should be further evaluated to determine whether heating treatment effectively enhances digestive activity, nutrient retention, and growth performance in target fish species.

Downloads

Download data is not yet available.

References

Adawyah, R., Khusnul, K. S., Wahyudinur, & Puspitasari, F. (2020). Pengaruh lama pemasakan terhadap kadar protein, lemak, profil asam amino, dan asam lemak tepung ikan sepat rawa (Trichogaster trichopterus). Jurnal Pengolahan Hasil Perikanan Indonesia, 23(2), 286–294. https://doi.org/10.17844/jphpi.v23i2.32339

Adegboyega, T. T., Abberton, M. T., Abdelgadir, A. H., Dianda, M., Maziya-Dixon, B., Oyatomi, O. A., Ofodile, S., & Babalola, O. O. (2019). Nutrient and antinutrient composition of winged bean (Psophocarpus tetragonolobus (L.) DC.) seeds and tubers. Journal of Food Quality, 2019, 1–8. https://doi.org/10.1155/2019/3075208

Ahn, J. Y., Kil, D. Y., Kong, C., & Kim, B. G. (2014). Comparison of oven-drying methods for determination of moisture content in feed ingredients. Asian-Australasian Journal of Animal Sciences, 27(11), 1615–1622. https://doi.org/10.5713/ajas.2014.14305

AOAC. (2015). Official methods of analysis of the association of official’s analytical chemists. 20th ed. Association of Official Analytical Chemist: Washington D.C. pp. 24-56.

Bepary, R. H., Roy, A., Pathak, K., & Deka, S. C. (2023). Biochemical composition, bioactivity, processing, and food applications of winged bean (Psophocarpus tetragonolobus): A review. Legume Science, 5(3). https://doi.org/10.1002/leg3.187

Damayanti, A., & Sjofjan, O. (2022). Effect of steaming on nutrient contents of flaxseed as a feed ingredient. Indonesian Journal of Applied Research (IJAR), 3(2), 95–102. https://doi.org/10.30997/ijar.v3i2.199

Fagbenro, O. A. (1999). Comparative evaluation of heat-processed winged bean (Psophocarpus tetragonolobus) meals as partial replacement for fish meal in diets for the African catfish (Clarias gariepinus). Aquaculture, 170(3–4), 297–305. https://doi.org/10.1016/S0044-8486(98)00409-8

Febnikayani, S., Rostika, R., Agung, M. U. K., & Herawati, T. (2018). Pengaruh penambahan tepung biji kecipir (Psophocarpus tetragonolobus) pada pakan komersial terhadap tingkat kematangan gonad ikan gurame (Osphronemus gouramy). Jurnal Perikanan Dan Kelautan, 9(2), 103-111.

Ibáñez, M. A., Blas, D, C., Cámara, L., & Mateos, G. G. (2020). Chemical composition, protein quality and nutritive value of commercial soybean meals produced from beans from different countries: A meta-analytical study. Animal Feed Science and Technology, 267, 114531. https://doi.org/10.1016/j.anifeedsci.2020.114531

Mohanty, C. S., Singh, V., & Chapman, M. A. (2020). Winged bean: an underutilized tropical legume on the path of improvement, to help mitigate food and nutrition security. Scientia Horticulturae, 260, 108789. https://doi.org/10.1016/j.scienta.2019.108789

Putra, I., Rusliadi, R., Fauzi, M., Tang, U. M., & Muchlisin, Z. A. (2017). Growth performance and feed utilization of African catfish Clarias gariepinus fed a commercial diet and reared in the biofloc system enhanced with probiotic. F1000Research, 6, 1545. https://doi.org/10.12688/f1000research.12438.1

Qin, P., Wang, T., & Luo, Y. (2022). A review on plant-based proteins from soybean: health benefits and soy product development. Journal of Agriculture and Food Research, 7, 100265. https://doi.org/10.1016/j.jafr.2021.100265

Rachmawati, D., Samidjan, I., Elfitasari, T., Amalia, R., & Nurhayati, D. (2021). Dietary lysine requirement of java barb (Puntius javanicus Bleeker, 1855) fingerlings to optimize feed efficiency, growth, and nutrient contents. Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology, 17(3), 209–216. https://doi.org/10.14710/ijfst.17.3.%25p

Sá, A. G. A., Moreno, Y. M. F., & Carciofi, B. A. M. (2020). Food processing for the improvement of plant proteins digestibility. Critical Reviews in Food Science and Nutrition, 60(20), 3367–3386. https://doi.org/10.1080/10408398.2019.1688249

Saadi, S., Saari, N., Ghazali, H. M., & Abdulkarim, M. S. (2022). Mitigation of antinutritional factors and protease inhibitors of defatted winged bean-seed proteins using thermal and hydrothermal treatments: Denaturation/unfolding coupled hydrolysis mechanism. Current Research in Food Science, 5, 207–221. https://doi.org/10.1016/j.crfs.2022.01.011

Samtiya, M., Aluko, R. E., & Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: an overview. Food Production, Processing and Nutrition, 2(1), 6. https://doi.org/10.1186/s43014-020-0020-5

Singh, J., & Chauhan, S. (2023). Winged bean. In A. D. Ranga & J. Singh (Eds.), Underutilized Vegetable Crops: Importance and Cultivation (1st ed., pp. 202–208). Jaya Publishing House.

Srichompoo, P., Suriyapha, C., Suntara, C., Chankaew, S., Rakvong, T., & Cherdthong, A. (2024). Effect of Replacing Corn Meal with Winged Bean Tuber (Psophocarpus tetragonolobus) Pellet on Gas Production, Ruminal Fermentation, and Degradability Using In Vitro Gas Technique. Animals, 14(3), 356. https://doi.org/10.3390/ani14030356

Sriwichai, S., Monkham, T., Sanitchon, J., Jogloy, S., & Chankaew, S. (2021). Dual-purpose of the winged bean (Psophocarpus tetragonolobus (L.) DC.), the neglected tropical legume, based on pod and tuber yields. Plants, 10(8), 1746. https://doi.org/10.3390/plants10081746

Suntara, C., Sombuddee, N., Lukbun, S., Kanakai, N., Srichompoo, P., Chankaew, S., Khonkhaeng, B., Gunun, P., Gunun, N., Polyorach, S., Foiklang, S., & Cherdthong, A. (2023). In Vitro Evaluation of Winged Bean (Psophocarpus tetragonolobus) Tubers as an Alternative Feed for Ruminants. Animals, 13(4), 677. https://doi.org/10.3390/ani13040677

Takeuchi, T., Lu, J., Yoshizaki, G., & Satoh, S. (2002). Effect on the growth and body composition of juvenile tilapia oreochromis niloticus fed raw spirulina. Fisheries Science, 68(1), 34–40. https://doi.org/10.1046/j.1444-2906.2002.00386.x

Tanzi, A. S., Eagleton, G. E., Ho, W. K., Wong, Q. N., Mayes, S., & Massawe, F. (2019). Winged bean (Psophocarpus tetragonolobus (L.) DC.) for food and nutritional security: synthesis of past research and future direction. Planta, 250(3), 911–931. https://doi.org/10.1007/s00425-019-03141-2

Tartila, S. S. Q. (2023). Komposisi dan analisis bahan pakan nabati. In D. P. Sari & M. Sari (Eds.), Manajemen Pembuatan dan Pemberian Pakan Ikan (1st ed., pp. 77–94). GET PRESS INDONESIA.

Tondang, H., Rostika, R., Yuliadi, L. P. S., & Subhan, U. (2019). Pematangan gonad ikan lele dumbo (Clarias gariepinus) menggunakan tepung biji kecipir (Psophocarpus tetragonolobus) dalam pakan komersil. Jurnal Perikanan dan Kelautan, 10(1), 55–63.

Torres, J., Rutherfurd, S. M., Muñoz, L. S., Peters, M., & Montoya, C. A. (2016). The impact of heating and soaking on the in vitro enzymatic hydrolysis of protein varies in different species of tropical legumes. Food Chemistry, 194, 377–382. https://doi.org/10.1016/j.foodchem.2015.08.022

Published
2024-07-02
How to Cite
Tartila, S. S. Q., Mujtahidah, T., Azril, M., Pramudita, A. A., Septiani, L., Satria, B. P., Cristanto, I. A., Oktavian, M. A. S., Risqulloh, S. J., & Astuti, S. D. (2024). Optimizing winged-bean meal through oven and autoclave heating as viable alternative for plant-based aquafeed. Jurnal Ilmiah Pertanian, 21(2). https://doi.org/10.31849/jip.v21i2.17579
Abstract viewed = 0 times
PDF (EN) downloaded = 0 times