Combination of bio-organo-mineral fertilizers on optimizing the growth and production of tomatoes (Solanum lycopersicum L.) in dryland environment

  • Alfassabiq Khairi Department of Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Teknologi Sumbawa, West Nusa Tenggara, Indonesia
  • Jayaputra Department of Agronomy, Faculty of Agriculture, Universitas Mataram, West Nusa Tenggara, Indonesia
  • Padusung Department of Soil Science, Faculty of Agriculture, Universitas Mataram, West Nusa Tenggara, Indonesia
  • Sri Tejowulan Department of Soil Science, Faculty of Agriculture, Universitas Mataram, West Nusa Tenggara, Indonesia
  • Nurrachman Department of Agronomy, Faculty of Agriculture, Universitas Mataram, West Nusa Tenggara, Indonesia
Keywords: sub-optimal land, agricultural sustainability, soil fertility, tomato, healthy food

Abstract

Mineral or inorganic fertilizers are increasingly being used to increase tomato productivity. However, excessive use of inorganic fertilizers may negatively impact soil fertility and microbial activity. To maintain food safety and agricultural sustainability, the use of inorganic fertilizers must be balanced with organic fertilizers. Additionally, sub-optimal land, such as dryland, can be used to optimize tomato productivity, particularly in the North Lombok Regency, Indonesia. This study aimed to investigate the effect and interaction of a combination of liquid organic fertilizer (LOF), plant growth regulator (PGR), and NPK fertilizers as inorganic fertilizers on the growth and yield of tomatoes in dryland. The experimental design was a completely randomized block design, with two factors: the concentrations of commercial inorganic fertilizer (0, 1,300, and 2,600 ppm) and the type of commercial LOF (Bio-Extrim and Organox) + commercial PGR (Hormax). The results showed that the interaction was not significantly different between inorganic fertilizer and LOF + PGR, except for mean fruit weight in the first week of harvest. However, there were differences in responses at the level of each factor. The application of inorganic fertilizer at 2,600 ppm increased tomato productivity by 13.81%. LOF was only significantly different in fruit weight/plant in the first week of harvest and was not significant after that.

Downloads

Download data is not yet available.

References

Adekiya, A. O., Dahunsi, S. O., Ayeni, J. F., Aremu, C., Aboyeji, C. M., Okunlola, F., & Oyelami, A. E. (2022). Organic and inorganic fertilizers effects on the performance of tomato (Solanum lycopersicum) and cucumber (Cucumis sativus) grown on soilless medium. Scientific Reports, 12(1), 12212. https://doi.org/10.1038/s41598-022-16497-5

Ahanger, M. A., Qi, M., Huang, Z., Xu, X., Begum, N., Qin, C., Zhang, C., Ahmad, N., Mustafa, N. S., Ashraf, M., & Zhang, L. (2021). Improving growth and photosynthetic performance of drought stressed tomato by application of nano-organic fertilizer involves up-regulation of nitrogen, antioxidant and osmolyte metabolism. Ecotoxicology and Environmental Safety, 216(4), 112195. https://doi.org/10.1016/j.ecoenv.2021.112195

Al-Taee, R. W. M., & Al-Shammari, M. F. M. (2022). Effect of spraying with organic fertilizer and sorbitol sugar on growth and yield of cabbage. International Journal of Aquatic Science, 13(01), 362-367.

Balittanah. (2009). Analisis kimia tanah, tanaman, air dan pupuk. http://balittanah.litbang.pertanian.go.id/ind/dokumentasi/buku/juknis%20kimia%20ed si%202/juknis_kimia2.pdf

Bechtaoui, N., Rabiu, M. K., Raklami, A., Oufdou, K., Hafidi, M., & Jemo, M. (2021). Phosphate-dependent regulation of growth and stresses management in plants. Frontiers in Plant Science, 12, 679916. https://doi.org/10.3389/fpls.2021.679916

Bilalis, D., Krokida, M., Roussis, I., Papastylianou, P., Travlos, I., Cheimona, N., & Dede, A. (2018). Effects of organic and inorganic fertilization on yield and quality of processing tomato (Lycopersicon esculentum Mill.). Folia Horticulturae, 30(2), 321-332. https://doi.org/10.2478/fhort-2018-0027

Coppens, J., Grunert, O., Hende, S. V. D., Vanhoutte, I., Boon, N., Haesaert, G., & Gelder, L. D. (2016). The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. Journal of Applied Phycology, 28, 2367-2377. https://doi.org/10.1007/s10811-015-0775-2

FAO. (2022, July 15). Food and agriculture data. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/

Farneselli, M., Benincasa, P., Bonciarelli, U., Tosti, G., Tei, F., & Guiducci, M. (2015). Yield and apparent dry matter and nitrogen balances for muskmelon in a long-term comparison between an organic and a conventional low input cropping system. Italian Journal of Agronomy, 10(3), 117-123. https://doi.org/10.4081/ija.2015.630

Gao, C., El-Sawah, A. M., Ali, D. F. I., Hamoud, Y. A., Shaghaleh, H., & Sheteiwy, M. S. (2020). The integration of bio and organic fertilizers improve plant growth, grain yield, quality and metabolism of hybrid maize (Zea mays L.). Agronomy, 10, 319. https://doi.org/10.3390/agronomy10030319

Gullap, M. K., Dasci, M., Erkovan, H. İ., Koc, A., & Turan, M. (2014). Plant growth-promoting rhizobacteria (PGPR) and phosphorus fertilizer-assisted phytoextraction of toxic heavy metals from contaminated soils. Communications in Soil Science and Plant Analysis, 45(19), 2593-2606. https://doi.org/10.1080/00103624.2014.929702

Handayani, T., Dewi, T. K., Martanti, D., Poerba, Y. S., Antonius, S., & Witjaksono. (2021). Application of inorganic and liquid organic bio-fertilizers affects the vegetative growth and rhizobacteria populations of eight banana cultivars. Biodiversitas, 22(3), 1261-1271. https://doi.org/10.13057/biodiv/d220323

Hasnain, M., Chen, J., Ahmed, N., Memon, S., Wang, L., Wang, Y., & Wang, P. (2020). The effects of fertilizer type and application time on soil properties, plant traits, yield and quality of tomato. Sustainability, 12(21), 9065. https://doi.org/10.3390/su12219065

Ilupeju, E. A. O., Akanbi, W. B., Olaniyi, J. O., Lawal, B. A., Ojo, M. A., & Akintokun, P. O. (2015). Impact of organic and inorganic fertilizers on growth, fruit yield, nutritional and lycopene contents of three varieties of tomato (Lycopersicon esculentum (L.) Mill) in Ogbomoso, Nigeria. African Journal of Biotechnology, 14(31), 2424-2433. https://doi.org/10.5897/AJB10.1902

Islam, M. A., Islam, S., Akter, A., Rahman, Md. H., & Nandwan, D. (2017). Effect of organic and inorganic fertilizers on soil properties and the growth, yield and quality of tomato in Mymensingh, Bangladesh. Agriculture, 7(3), 18. https://doi.org/10.3390/agriculture7030018

Johnson, R., Vishwakarma, K., Hossen, Md. S., Kumar, V., Shackira, A. M., Puthur, J. T., Abdi, G., Sarraf, M., & Hasanuzzaman, M. (2022). Potassium in plants: growth regulation, signaling, and environmental stress tolerance. Plant Physiology and Biochemistry, 172(4), 56-69. https://doi.org/10.1016/j.plaphy.2022.01.001

Johri, A. K., Oelmüller, R., Dua, M., Yadav, V., Kumar, M., Tuteja, N., Varma, A., Bonfante, P., Persson, B. L., & Stroud, R. M. (2015). Fungal association and utilization of phosphate by plants: success, limitations, and future prospects. Frontiers in Microbiology, 6(984). https://doi.org/10.3389/fmicb.2015.00984

Kang, Y-G., Lee, J-H., Chun, J-H., Yun, Y-U., Hatamleh, A. A., Al-Dosary, M. A., Al-Wasel, Y. A., Lee, K-S., & Oh, T-K. (2022). Influence of individual and co-application of organic and inorganic fertilizer on NH3 volatilization and soil quality. Journal of King Saud University – Science, 34(5), 102068. https://doi.org/10.1016/j.jksus.2022.102068

Kasim, N., Panggula, N. D. P., Haring, F., Ulfa, F., Dachlan, A., Widiayani, N., & Yulsan, D. (2020). Growth and production of katokkon (Capsicum chinense Jacq) chili plants in lowland applied with gibberellins and liquid organic fertilizer. IOP Conference Series: Earth and Environmental Science, 486, 012121. https://doi.org/10.1088/1755-1315/486/1/012121

Khairi, A., Murti, R. H., Irwan, S. N. R., & Putra, E. T. S. (2022). Postharvest losses of NOR tomato fruit line MA 131-6-3 treated by ethephon and calcium carbide. Jurnal Agronomi Indonesia, 50(3), 315-321. https://doi.org/10.24831/jai.v50i3.41273

Khan, A. A., Bibi, H., Ali, Z., Sharif, M., Shah, S. A., Ibadullah, H., Khan, K., Azeem, I., & Ali, S. (2017). Effect of compost and inorganic fertilizers on yield and quality of tomato. Academia Journal of Agricultural Research, 5(10), 287-293. https://doi.org/10.15413/ajar.2017.0135

Kochakinezhad, H., Peyvast, Gh., Kashi, A. K., Olfati, J. A., & Asadii, A. (2012). A comparison of organic and chemical fertilizers for tomato production. Journal of Organic Systems, 7(2), 14-25.

Kreshnadhi, G. A. A. P., Jaya, I. K. D., Santoso, B. B., Wangiyana, W., & Suheri, H. (2021). Application of manures reduces inorganic fertilizers requirement for maize grown in a sandy soil. IOP Conference Series: Earth and Environmental Science, 913, 012001. https://doi.org/10.1088/1755-1315/913/1/012001

Laxmi, P. R., Saravanan, S., & Naik, M. L. (2015). Effect of organic manures and inorganic fertilizers on plant growth, yield, fruit quality and shelf life of tomato (SOLANUMLYCOPERSICONL.) c.v. PKM-1. International Journal of Agricultural Science and Research (IJASR), 5(2), 7-12.

Moekasan, T. K., Prabaningrum, L., Adiyoga, W., & Putter, H. de. (2015). Modul pelatihan budidaya cabai merah, tomat, dan mentimun berdasarkan konsepsi pengendalian hama terpadu. https://kesimankertalangu.id/assets/files/modul-pelatihan-budidaya-cabai-merah-tomat-dan-mentimun-berdasarkan-konsepsi-pengendalian-hama-terpadu-16-2021-04-22.pdf

Molla, A. H., Haque Md, M., Haque Md, A., & Ilias, G. N. M. (2012). Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agricultural Research, 1(3), 265-272. https://doi.org/10.1007/s40003-012-0025-7

Mpanga, I. K., Dapaah, H. K., Geistlinger, J., Ludewig, U., & Neumann, G. (2018). Soil type-dependent interactions of P-solubilizing microorganisms with organic and inorganic fertilizers mediate plant growth promotion in tomato. Agronomy, 8(10), 213. https://doi.org/10.3390/agronomy8100213

Murtic, S., Oljaca, R., Murtic, M. S., Vranac, A., Akagic, A., & Civic, H. (2018). Cherry tomato productivity as influenced by liquid organic fertilizer under different growth conditions. Journal of Central European Agriculture, 19(3), 503-516. https://doi.org/10.5513/JCEA01/19.3.2168

Nhu, N. T. H., Chuen, N. L., & Riddech, N. (2018). The effects bio-fertilizer and liquid organic fertilizer on the growth of vegetables in the pot experiment. Chiang Mai Journal of Science, 45(3), 1257-1273.

Noein, B., & Soleymani, A. (2022). Corn (Zea mays L.) physiology and yield affected by plant growth regulators under drought stress. Journal of Plant Growth Regulation, 41(2), 672-681. https://doi.org/10.1007/s00344-021-10332-3

Noor, H. M., Ahmad, H., & Sayuti, Z. (2019). Effect of mycorrhiza, fertilizers and planting media on rock melon (Cucumis melo Linn Cv. Glamour) growth using the canopytechture structure. International Journal of Applied Agricultural Sciences, 5(1), 14-19. https://doi.org/10.11648/j.ijaas.20190501.12

Nurahmi, E., Hasinah, H. A. R., & Mulyani, S. (2010). Pertumbuhan dan hasil kubis bunga akibat pemberian pupuk organik cair nasa dan zat pengatur tumbuh hormonik. Agrista, 14(1), 1-7.

Pu, R., Wang, P., Guo, L., Li, M., Cui, X., Wang, C., Liu, Y., & Yang, Y. (2022). The remediation effects of microbial organic fertilizer on soil microorganisms after chloropicrin fumigation. Ecotoxicology and Environmental Safety, 231, 113188. https://doi.org/10.1016/j.ecoenv.2022.113188

Riawan, A. J., Padusung, & Jayaputra. (2018). Status kandungan residu pupuk NPK (Phonska) pada perlakuan dosis pupuk yang berbeda pada tanaman tomat (Solanum lycopersicum Var: Servo F1) di entisol Lombok Utara. Agroteksos. 28(1), 17-25.

Saavedra, T. M., Figueroa, G. A., & Cauih, J. G. D. (2017). Origin and evolution of tomato production Lycopersicon esculentum in México. Ciência Rural, 47(3), e20160526. https://doi.org/10.1590/0103-8478cr20160526

Salam, A. B. A., Ashrafuzzaman, M., Sikder, S., Mahmud, A., & Joardar, J. C. (2021). Influence of municipal solid waste compost on yield of tomato applied solely and in combination with inorganic fertilizer where nitrogen is the only variable factor. Malaysian Journal of Sustainable Agriculture (MJSA), 5(1), 29-33. https://doi.org/10.26480/mjsa.01.2021.29.33

Shi, D., Zhuang, K., Chen, Y., Xu, F., Hu, Z., & Shen, Z. (2020). Effects of excess ammoniacal nitrogen (NH4+-N) on pigments, photosynthetic rates, chloroplast ultrastructure, proteomics, formation of reactive oxygen species and enzymatic activity in submerged plant Hydrilla verticillata (L.f.) Royle. Aquatic Toxicology, 226, 105585. https://doi.org/10.1016/j.aquatox.2020.105585

Suherman, C., Nuraini, A., Wulandari, A. P., & Kadapi, M. (2017). Enhancing the growth and yield of ramie (Boehmeria nivea L.) by ramie biomass waste in liquid form and gibberellic acid. IOP Conference Series: Earth and Environmental Science, 65, 012017. https://doi.org/10.1088/1755-1315/65/1/012017

Tahaei, S. A., Nasri, M., Soleymani, A., Ghooshchi, F., & Oveysi, M. (2022). Plant growth regulators affecting corn (Zea mays L.) physiology and rab17 expression under drought conditions. Biocatalysis and Agricultural Biotechnology, 41, 102288. https://doi.org/10.1016/j.bcab.2022.102288

Turuko, M., & Mohammed, A. (2014). Effect of different phosphorus fertilizer rates on growth, dry matter yield and yield components of common bean (Phaseolus vulgaris L.). World Journal of Agricultural Research, 2(3), 88-92. https://doi.org/10.12691/wjar-2-3-1

Ullah, N., Ditta, A., Imtiaz, M., Li, X., Jan, A. U., Mehmood, S., Rizwan, M. S., & Rizwan, M. (2021). Appraisal for organic amendments and plant growth-promoting rhizobacteria to enhance crop productivity under drought stress: A review. Journal of Agronomy and Crop Science, 207(5), 783-802. https://doi.org/10.1111/jac.12502

USDA. (2022, July 15). FoodData Central. US Department of Agriculture Agricultural Research Service. https://fdc.nal.usda.gov/index.html

Wang, H., Xu, J., Liu, X., Zhang, D., Li, L., Li, W., & Sheng, L. (2019). Effect of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil & Tillage Research, 195, 104382. https://doi.org/10.1016/j.still.2019.104382

Wang, J., Li, R., Zhang, H., Wei, G., & Li, Z. (2020). Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiology, 20, 38. https://doi.org/10.1186/s12866-020-1708-z

Watanabe, M., Ohta, Y., Licang, S., Motoyama, N., & Kikuchi, J. (2015). Profiling contents of water-soluble metabolites and mineral nutrients to evaluate the effects of pesticides and organic and chemical fertilizers on tomato fruit quality. Food Chemistry, 169, 387-395. https://doi.org/10.1016/j.foodchem.2014.07.155

Wu, L., Jiang, Y., Zhao, F., He, X., Liu, H., & Yu, K. (2020). Increased organic fertilizer application and reduced chemical fertilizer application affect the soil properties and bacterial communities of grape rhizosphere soil. Scientific Reports, 10, 9568. https://doi.org/10.1038/s41598-020-66648-9

Zahid, G., Iftikhar, S., Shimira, F., Ahmad, H. M., & Kaçar, Y. A. (2023). An overview and recent progress of plant growth regulators (PGRs) in the mitigation of abiotic stresses in fruits: A review. Scientia Horticulturae, 309, 111621. https://doi.org/10.1016/j.scienta.2022.111621

Zheng, X., Zhu, Y., Wang, Z., Zhang, H., Chen, M., Chen, Y., Wang, J., & Liu, B. (2020). Effects of a novel bio-organic fertilizer on the composition of rhizobacterial communities and bacterial wilt outbreak in a continuously mono-cropped tomato field. Applied Soil Ecology, 156, 103717. https://doi.org/10.1016/j.apsoil.2020.103717

Published
2023-05-08
How to Cite
Khairi, A., Jayaputra, Padusung, Tejowulan, S., & Nurrachman. (2023). Combination of bio-organo-mineral fertilizers on optimizing the growth and production of tomatoes (Solanum lycopersicum L.) in dryland environment. Jurnal Ilmiah Pertanian, 20(2), 127-138. https://doi.org/10.31849/jip.v20i2.10901
Section
Original Articles
Abstract viewed = 315 times
PDF (EN) downloaded = 213 times