Studi Perbandingan Respons Seismik Tanah Berdasarkan Metode Linier Ekuivalen Dan Nonlinier

Authors

  • Debby Ariansyah Ahmad Departemen Teknik Sipil, Fakultas Teknik, Universitas Bengkulu, Bengkulu, Indonesia
  • Lindung Zalbuin Mase Departemen Teknik Sipil, Fakultas Teknik, Universitas Bengkulu, Bengkulu, Indonesia
  • Fepy Supriani Departemen Teknik Sipil, Fakultas Teknik, Universitas Bengkulu, Bengkulu, Indonesia
  • Rena Misliniyati Departemen Teknik Sipil, Fakultas Teknik, Universitas Bengkulu, Bengkulu, Indonesia
  • Khairul Amri Departemen Teknik Sipil, Fakultas Teknik, Universitas Bengkulu, Bengkulu, Indonesia

DOI:

https://doi.org/10.31849/siklus.v11i1.20669

Keywords:

faktor amplifikasi, peak ground acceleration, riwayat waktu percepatan gempa, respons spektra percepatan, analisis respons seismik tanah

Abstract

Sejarah kegempaan Bengkulu mencatat bahwa gempa bumi berkekuatan 8,6 Mw tahun 2007 merupakan gempa terbesar yang melanda Provinsi Bengkulu. Gempa tersebut menimbulkan dampak yang besar sehingga banyak menelan korban jiwa dan menghancurkan fasilitas umum terutama di wilayah Pesisir Selatan Provinsi Bengkulu. Merujuk pada kejadian tersebut, dilakukan sebuah analisis respons seismik tanah. Penelitian ini bertujuan untuk membandingkan respons tanah terhadap gempa dengan metode linier ekuivalen dan metode nonlinier. Informasi yang berkaitan dengan profil tanah dan data gelombang gempa berdasarkan gempa yang pernah terjadi di Kota Bengkulu dikumpulkan. Tahapan analisis respons seismik linier ekuivalen dan nonlinier satu dimensi menggunakan program analisis respons seismik satu dimensi DeepSoil. Peak Ground Acceleration (PGA), riwayat waktu percepatan gempa, respons spektra percepatan, dan faktor amplifikasi dianalisis dalam studi ini. Penelitian memperlihatkan bahwa model linier ekuivalen menghasilkan nilai lebih besar dari pada model nonlinier dalam setiap parameter yang dianalisis. Nilai PGA model nonlinier adalah 0,31g - 0,51g. Sedangkan nilai PGA model linier ekuivalen adalah 0,46g - 0,60g. Nilai PGA menunjukkan bahwa area penelitian memiliki  kerentanan seismik yang tinggi. Respons spektra percepatan telah melebihi desain seismik yang berlaku. Percepatan respons  spektra lapisan mencapai nilai maksimum pada periode 0,2 sampai 1 detik dengan nilai percepatan 0,10g sampai 2,74g. Nilai amplifikasi metode nonlinier adalah 0,94 - 1,65. Sedangkan nilai amplifikasi metode linier ekuivalen adalah 1,38 - 1,82. Hasil analisis terhadap faktor amplifikasi dan respons spektra percepatan menunjukkan perlunya pembaruan desain respons seismik untuk perencanaan gedung di Pesisir Selatan Provinsi Bengkulu.

References

Adampira, M., Alielahi, H., Panji, M., & Koohsari, H. (2015). Comparison of Equivalent Linear and Nonlinear Methods in Seismic Analysis of Liquefiable Site Response Due to Near-fault Incident Waves: a Case Study. Arabian Journal of Geosciences, 8(5), 3103–3118. http://dx.doi.org/10.1007/s12517-014-1399-6

Badan Standarisasi Nasional. (2019). SNI 1726:2019 Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung. https://sitaba.pu.go.id/publikasi/6977fb4f

Fathani, T. F., Adi, A. D., Pramumijoyo, S., & Karnawati, D. (2008). The Determination of Peak Ground Acceleration at Bantul Regency, Yogyakarta Province, Indonesia. The Yogyakarta Earthquake 2006, 12(1), 12–15.

Finn, W.D., Lee, M.K., & Martin, G.R. (1978). Comparison of Dynamic Analyses For Saturated Sands. In Earthquake Engineering and Soil Dynamics, (pp. 472-491) (ASCE). https://trid.trb.org/view/74561

Hashash, Y. M. A., Dashti, S., Romero, M. I., Ghayoomi, M., & Musgrove, M. (2015). Evaluation of 1-D Seismic Site Response Modeling of Sand Using Centrifuge Experiments. Soil Dynamics and Earthquake Engineering, 78, 19–31. https://doi.org/10.1016/j.soildyn.2015.07.003

International Code Council. (2021). International Building Code (IBC), ICC, Washington, D.C. https://codes.iccsafe.org/content/IBC2021P2

Jannah, D. M. (2024). Analisis Indeks Kerentanan Seismik Berdasarkan Nilai Vs30 Pada Zona Terdampak Gempa Bumi (Studi Kasus: Gempa Cianjur 21 November 2022). Kurvatek, 9(2), 107–116. https://doi.org/10.33579/krvtk.v9i2.4972

Kramer, S. L., & Stewart, J. P. (2024) Geotechnical Earthquake Engineering, Second Edition. CRC Press, Boca Raton. https://doi.org/10.1201/9781003512011

Likitlersuang, S., Plengsiri, P., Mase, L. Z., & Tanapalungkorn, W. (2019). Influence of Spatial Variability of Ground on Seismic Response Analysis: a Case Study of Bangkok Subsoils. Bulletin of Engineering Geology and the Environment, 79(1), 39–51. https://doi.org/10.1007/s10064-019-01560-9

Ma, J., Dong, L., Zhao, G., & Li, X. (2019). Focal Mechanism of Mining-Induced Seismicity in Fault Zones: A Case Study of Yongshaba Mine in China. Rock Mechanics and Rock Engineering, 52(9), 3341–3352. https://doi.org/10.1007/s00603-019-01761-4

Mase, L. Z. (2015). Karakteristik Gempa di Kota Bengkulu. Jurnal Ilmiah Bidang Sains - Teknologi. 2(15), 25–34. https://www.researchgate.net/publication/295908169

Mase, L. Z. (2017a). Liquefaction Potential Analysis Along Coastal Area of Bengkulu Province Due to the 2007 Mw 8.6 Bengkulu Earthquake. Journal of Engineering and Technological Sciences, 49(6), 721–736. https://doi.org/10.5614/j.eng.technol.sci.2017.49.6.2

Mase, L. Z. (2017b). Shaking Table Test of Soil Liquefaction in Southern Yogyakarta. International Journal of Technology, 8(4), 747–760. https://doi.org/10.14716/ijtech.v8i4.9488

Mase, L. Z. (2018a). Reliability Study of Spectral Acceleration Designs Against Earthquakes in Bengkulu City, Indonesia. International Journal of Technology, 9(5), 910–924. https://doi.org/10.14716/ijtech.v9i5.621

Mase, L. Z. (2018b). Seismic Response Analysis Along the Coastal Area of Bengkulu During the September 2007 Earthquake. Makara Journal of Technology, 22(1), 37-45. https://doi.org/10.7454/mst.v22i1.3457

Mase, L. Z., Likitlersuang, S., & Tobita, T. (2018a). Analysis of Seismic Ground Response Caused During Strong Earthquake in Northern Thailand. Soil Dynamics and Earthquake Engineering, 114, 113–126. https://doi.org/10.1016/j.soildyn.2018.07.006

Mase, L. Z., Likitlersuang, S., & Tobita, T. (2018b). Non-linear Site Response Analysis of Soil Sites in Northern Thailand During the Mw 6.8 Tarlay Earthquake. Engineering Journal, 22(3), 291–303. https://doi.org/10.4186/ej.2018.22.3.291

Mase, L. Z., Likitlersuang, S., & Tobita, T. (2019). Cyclic Behaviour and Liquefaction Resistance of Izumio Sands in Osaka, Japan. Marine Georesources and Geotechnology, 37(7), 765–774. https://doi.org/10.1080/1064119X.2018.1485793

Mase, L. Z. (2020). Seismic Hazard Vulnerability of Bengkulu City, Indonesia, Based on Deterministic Seismic Hazard Analysis. Geotechnical and Geological Engineering, 38, 5433-5455. https://doi.org/10.1007/s10706-020-01375-6

Mase, L. Z., Fathani, T. F., & Adi, A. D. (2021a). A Simple Shaking Table Test to Measure Liquefaction Potential of Prambanan Area, yogyakarta, Indonesia. ASEAN Engineering Journal, 11(3), 89–108. https://doi.org/10.11113/AEJ.V11.16874

Mase, L. Z., Sugianto, N., & Refrizon. (2021b). Seismic Hazard Microzonation of Bengkulu City, Indonesia. Geoenvironmental Disasters, 8(5), 1-17. https://doi.org/10.1186/s40677-021-00178-y

Mase, L. Z., Likitlersuang, S., & Tobita, T. (2022a). Verification of Liquefaction Potential During the Strong Earthquake at the Border of Thailand-Myanmar. Journal of Earthquake Engineering, 26(4), 2023–2050. https://doi.org/10.1080/13632469.2020.1751346

Mase, L. Z., Tanapalungkorn, W., Likitlersuang, S., Ueda, K., & Tobita, T. (2022b). Liquefaction Analysis of Izumio Sands Under Variation of Ground Motions During Strong Earthquake in Osaka, Japan. Soils and Foundations, 62(5), 1-22. https://doi.org/10.1016/j.sandf.2022.101218

Mase, L. Z., Irsyam, M., Gustiparani, D., Noptapia, A. N., Syahbana, A. J., & Soebowo, E. (2024). Identification of Bedrock Depth Along a Downstream Segment of Muara Bangkahulu River, Bengkulu City, Indonesia. Bulletin of Engineering Geology and the Environment, 83(4). https://doi.org/10.1007/s10064-024-03591-3

Misliniyati, R., Mase, L. Z., Syahbana, A. J., & Soebowo, E. (2018). Seismic Hazard Mitigation for Bengkulu Coastal Area Based on Site Class Analysis. IOP Conference Series: Earth and Environmental Science, 212(2018), 1-10. https://doi.org/10.1088/1755-1315/212/1/012004

Misliniyati, R., Mase, L. Z., Irsyam, M., Hendriyawan, & Sahadewa, A. (2019a). Seismic Response Validation of Simulated Soil Models to Vertical Array Record During a Strong Earthquake. Journal of Engineering and Technological Sciences, 51(6), 772–790. https://doi.org/10.5614/j.eng.technol.sci.2019.51.6.3

Misliniyati, R., Sahadewa, A., Hendriyawan, & Irsyam, M. (2019b). Parametric Study of One-Dimensional Seismic Site Response Analyses Based on Local Soil Condition of Jakarta. Journal of Engineering and Technological Sciences, 51(3), 392–410. https://doi.org/10.5614/j.eng.technol.sci.2019.51.3.7

Pender, M. J., Orense, R. P., Wotherspoon, L. M., & Storie, L. B. (2016). Effect of Permeability on the Cyclic Generation and Dissipation of Pore Pressures in Saturated Gravel Layers. Geotechnique, 66(4), 313–322. https://doi.org/10.1680/jgeot.SIP.15.P.024

Permatasari, N. I., Wibowo, N. B., & Darmawan, D. (2016). Intensitas Gempabumi Kecamatan Arjosari Pacitan Jawa Timur. Jurnal Fisika, 5(3), 198–204. http://dx.doi.org/10.21831/jifta.v5i3.953

Qodri, M. F., Mase, L. Z., Bengkulu, U., & Likitlersuang, S. (2019). Simulation of Seismic Ground Response at Bangkok Subsoil due to Si Sawat Fault. (July), 1–10. https://www.researchgate.net/publication/334469653

Salsabil, A. R., Hilyah, A., Purwanto, M. S., & Fajar, M. H. M. (2018). Zonasi Bahaya Kegempaan Akibat Patahan Aktif Di Wilayah Jawa Timur Dengan Pendekatan Deterministik Menggunakan Perhitungan Atenuasi Chiou-Youngs 2014 NGA. Jurnal Geosaintek, 4(3), 103-115. https://doi.org/10.12962/j25023659.v4i3.4508

Seed, H. B., & Idriss, I. M. (1991). Soil Moduli and Damping Factors for Dynamic Response Analyses. Earthquake Engineering Research Centre Report EERC. Berkeley, California. https://ntrl.ntis.gov/NTRL/

Somantri, A. K., Mase, L. Z., Susanto, A., Gunadi, R., & Febriansya, A. (2023). Analysis of Ground Response of Bandung Region Subsoils due to Predicted Earthquake Triggered by Lembang Fault, West Java Province, Indonesia. Geotechnical and Geological Engineering, 41(2), 1155–1181. https://doi.org/10.1007/s10706-022-02328-x

Suhartini, C. E., Mase, L. Z., & Farid, M. (2019). Mikrozonasi Percepatan Tanah Maksimum Akibat Gempabumi 12 September 2007 Di Kecamatan Ratu Agung Kota Bengkulu. In Civil Engineering and Built Environment Conference, (90–99). Bengkulu, Indonesia. https://www.researchgate.net/publication/338294019

Vucetic, M., & Dobry, R. (1991). Effect of Soil Plasticity on Cyclic Response. Journal of Geotechnical Engineering, 117(1), 89–107. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89)

Wibowo, N. B., Darmawan, D., Utami, Z., & Patimah, S. (2018). Analisa Resiko Bahaya Seismik Berdasarkan Parameter Ketebalan Lapisan Sedimen dan Faktor Amplifikasi di Kecamatan Prambanan Dan Gantiwarno. Jurnal Sains Dasar, 7(2), 117–123. http://dx.doi.org/10.21831/jsd.v7i2.38553

Yoshida, N. (2015). Geotechnical, Geological and Earthquake Engineering Seismic Ground Response Analysis. Springer, London. http://doi.org/10.1007/978-94-017-9460-2

Yunita, H., Hendriyawan, & Apriadi, D. (2015). An Overview of Soil Models for Earthquake Response Analysis. Journal of Engineering and Technological Sciences, 47(1), 57–75. https://doi.org/10.5614/j.eng.technol.sci.2015.47.1.5

Downloads

Published

2025-04-30

How to Cite

Studi Perbandingan Respons Seismik Tanah Berdasarkan Metode Linier Ekuivalen Dan Nonlinier. (2025). Siklus : Jurnal Teknik Sipil, 11(1), 1-22. https://doi.org/10.31849/siklus.v11i1.20669

Similar Articles

1-10 of 108

You may also start an advanced similarity search for this article.