Microwave-assisted extraction and computational modelling of curcumin from turmeric (Curcuma longa) for sunscreen applications

Authors

  • Salmahaminati Salmahaminati Department of Chemistry, Faculty of Mathematic & Natural Science, Universitas Islam Indonesia, D.I Yogyakarta 55584, Indonesia
  • Khopipah Muchtar Department of Chemistry, Faculty of Mathematic & Natural Science, Universitas Islam Indonesia, D.I Yogyakarta 55584, Indonesia
  • Febi Indah Fajarwati Department of Chemistry, Faculty of Mathematic & Natural Science, Universitas Islam Indonesia, D.I Yogyakarta 55584, Indonesia
  • Mutiara Herawati Department of Pharmacy, Faculty of Mathematic & Natural Science, Universitas Islam Indonesia, D.I Yogyakarta 55584, Indonesia
  • Ayundyah Kesumawati Department of Statistics, Faculty of Mathematic & Natural Science, Universitas Islam Indonesia, D.I Yogyakarta 55584, Indonesia

DOI:

https://doi.org/10.31849/jip.v22i2.22693

Keywords:

photoprotection, natural antioxidant , density functional theory , microwave extraction efficiency , UV absorption spectrum

Abstract

Excessive exposure to ultraviolet (UV) radiation from sunlight can cause skin damage, including premature aging, sunburn, and increased risk of skin cancer. While synthetic sunscreen agents are widely used, concerns over their long-term safety have driven interest in natural alternatives. In this study, curcumin was extracted from turmeric rhizomes (Curcuma longa) using microwave-assisted extraction (MAE) as a potential natural sunscreen. The highest yield was obtained using ethanol as solvent (5.5%), 100 watts of microwave power (5.7%), and solvent temperature of 50 °C (7.8%). Curcumin presence was confirmed by thin layer chromatography (TLC), with Rf values from 0.63 (methanol) to 0.82 (ethanol). Fourier transform infrared (FTIR) spectroscopy showed functional groups including O–H, C–H, C=C, C=O, and C–O, along with trans-C–H benzoate vibrations. ¹H-NMR spectra supported its presence, with chemical shifts at 3.80–3.92, 6.54–7.18, and 7.31–7.49 ppm. UV-Vis analysis revealed strong absorption in the UV-A region (320–420 nm), and DFT-based computational modelling showed peaks at 276 and 405 nm. These results highlight curcumin’s potential as a photoprotective agent, supporting safer, plant-based sunscreen formulations and offering a sustainable alternative for the cosmetic industry.

References

Calinescu, I., Ciuculescu, C., Popescu, M., Bajenaru, S., and Epure, G. (2018). Microwaves assisted extraction of active principles from vegetal material. In Romanian International Conference on Chemistry and Chemical Engineering (Vol. 12, pp. 1-6).

Chemat, F., Vian, M. A., & Cravotto, G. (2012). Green extraction of natural products: Concept and principles. International journal of molecular sciences, 13(7), 8615-8627. https://doi.org/10.3390/ijms13078615

Dwiseptianti, C., Susanto, F. A., Purwestri, Y. A., & Nuringtyas, T. R. Optimasi Metode 1H-NMR Profiling pada Rimpang Kunyit (Curcuma domestica). Bioeksperimen: Jurnal Penelitian Biologi, 5(2), 106-113. https://doi.org/10.23917/bioeksperimen.v5i2.9238

Furi M., Rizaldi R., Fernando A., Nasution M. R. (2019). Uji Aktivitas Tabir Surya Ekstrak Etanol Daging Buah Jambu Biji Merah dan Jambu Biji Putih (Psidium guajava L.). Jurnal Penelitian Farmasi Indonesia, 7(2), 57–60.

Garino, C., Terenzi, A., Barone, G., & Salassa, L. (2016). Teaching Inorganic Photophysics and Photochemistry with Three Ruthenium(II)Polypyridyl Complexes: A Computer-Based Exercise. J. Chem. Educ., 93(2), 292–298. https://doi.org/10.1021/acs.jchemed.5b00801

Gorman A.A., Hamblett V.S., Srinivasan V.S., Wood P.D. (1994). Curcumin-derived transients: a pulsed laser and pulse radiolysis study. Photochem. Photobiol. 59(4), 389-398. https://doi.org/10.1111/j.1751-1097.1994.tb05053.x

Kanani N., Rochmat A., Pahlevi R., Rohani F. Y. (2017). Proses Pengaruh Temperatur Terhadap Nilai Sun Protecting Factor (SPF) pada Ekstrak Kunyit Putih sebagai bahan pembuat tabir surya Menggunakan Pelarut Etil Asetat dan Metanol. Jurnal Integrasi Proses, 6(3), 143-147. http://dx.doi.org/10.36055/jip.v6i3.1450

Male Y. T., Sutapa I W., dan Olivia M.R. (2015). Studi Komputasi Zat Warna (Dyes) Alami sebagai Material Aktif pada Sel Surya Organik Menggunakan Teori Fungsional Kerapatan (Density Functional Theory, DFT), Indonesian Journal of Chemical Research, 2(2), 205–212. https://doi.org/10.30598/ijcr.2015.2-yus

Margaretta, S., Handayani, S.D., Indraswati, N dan Hindarso H. (2011). Ekstraksi Senyawa Phenolic Pandanus amaryllifolius Roxb. Sebagai Antioksidan Alami. Widya Teknik An Enggineering Journal, 10(1), 21-30. https://doi.org/10.33508/wt.v10i1.157

Mandal, V., Dewanjee, S., & Mandal, S. C. (2009). Microwave‐assisted extraction of total bioactive saponin fraction from Gymnema sylvestre with reference to gymnemagenin: a potential biomarker. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 20(6), 491-497. https://doi.org/10.1002/pca.1151

Mokodompit, A. N., Edy, H. J., & Wiyono, W. (2013). Penentuan Nilai Sun Protective Factor (SPF) Secara In Vitro Krim Tabir Surya Ekstrak Etanol Kulit Alpukat. Pharmacon, 2(3). https://doi.org/10.35799/pha.2.2013.2385

Purnama, I., Salmahaminati, Abe, M., Hada, M., Kubo, Y., & Mulyana, J. Y. (2019). Factors influencing the photoelectrochemical device performance sensitized by ruthenium polypyridyl dyes. Dalton Transactions, 48 (2), 688-695.

https://doi.org/10.1039/C8DT03502D

Puspitasari, A. D., & Setyowati, D. A. (2018). Evaluasi Karakteristik Fisika Kimia dan Nilai SPF Sediaan Gel Tabir Surya Ekstrak Etanol Daun Kersen (Muntingia Calabura L), Journal Pharmasciences, 5(2), 153-162. http://dx.doi.org/10.20527/jps.v5i2.5797

Priyadarsini, K. I. (2014). The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules, 19(12), 20091-20112. https://doi.org/10.3390/molecules191220091

Rowe, R. C., Sheskey, P. J., & Quinn, M. E. (2009). Handbook of Pharmaceutical Excipients. Sixth Edition.

Salmahaminati, Purnama, I., Abe, M., Hada, M., & Mulyana, J.Y. (2021). Density Functional Study of Metal-to-Ligand Charge Transfer and Hole-Hopping in Ruthenium (II) Complexes with Alkyl-Substituted Bipyridine Ligands. ACS omega, 6 (1), 55-64. https://doi.org/10.1021/acsomega.0c01199

Salmahaminati & Fajar, P. (2015). Semiempirical Study on Electronical Transition Spectra of Ethyl p-methoxycinnamate (EPMS) from Kencur (Kaempferia galanga) for Sunscreen Component. EKSAKTA: Journal of Sciences and Data Analysis. 15 (1-2), 38-47. https://doi.org/10.20885/eksakta.vol15.iss1-2.art4

Sari, A. & Maulidya, A. (2016). Formulasi Sediaan Salep Ekstrak Etanol Rimpang Kunyit (Curcuma longa Linn). J. Tradisional Media, 3(1), 16-23.

Shen, L., & Ji, H. (2006). Theoretical study on physicochemical properties of curcumin. Spectrochimica Acta Part A, 67(3-4) 619–623. https://doi.org/10.1016/j.saa.2006.08.018

Silverstein, R. M., Bassler, G. C., and Morrill, T. C. (1981) Spectrometric Identification of Organic Compounds. 4th Edition, John Wiley and Sons, New York.

Snyder, H. D., & Kucukkal, T. G. (2021). Computational Chemistry Activities with Avogadro and ORCA. Journal of Chemical Education, 98(4): 1335–1341. https://doi.org/10.1021/acs.jchemed.0c00959

Sucipto, L., Rustyawan, W., Jumaeri, Alighiri, D., & Wahyuni S. (2019). Pengaruh Temperatur dan Rasio H2/Hidrokarbon menggunakan Katalis CoMo/γ-Al2O3 pada Hydrotreating Combined Gas Oil, Indonesian Journal of Chemical Science, 8(3), 185-190.

Theint, P. P., Sakkayawong, N., Buajarern, S., & Singkhonrat, J. (2025). Development of an analytical fluorescence method for quantifying β-glucan content from mushroom extracts; utilizing curcumin as a green chemical fluorophore. Journal of Food Composition and Analysis, 137, 106896. https://doi.org/10.1016/J.JFCA.2024.106896

Van Nong, H., Hung, L. X., Thang, P. N., Chinh, V. D., Vu, L. Van, Dung, P. T., Van Trung, T., & Nga, P. T. (2016). Fabrication and vibration characterization of curcumin extracted from turmeric (Curcuma longa) rhizomes of the northern Vietnam. SpringerPlus, 5(1). https://doi.org/10.1186/s40064-016-2812-2

Wu, B., Liu, X., Shi, X., Han, W., Wang, C., & Jiang, L. (2019). Highly photoluminescent and temperature-sensitive P, N, B-co-doped carbon quantum dots and their highly sensitive recognition for curcumin. RSC Advances, 9(15), 8340–8349. https://doi.org/10.1039/c9ra00183b

Zarate, X., González P, I., Caramori, S., Benazzi, E., Barra, T., Arrue, L., Wu, Y. nan, Díaz-Uribe, C., Vallejo, W., & Schott, E. (2021). Experimental and DFT study of natural curcumin derived dyes as n-type sensitizers. Solar Energy, 225(June), 305–315. https://doi.org/10.1016/j.solener.2021.06.051

Downloads

Published

2025-06-16

Issue

Section

Short Communication

How to Cite

Salmahaminati, S., Muchtar, K. ., Fajarwati, F. I. ., Herawati, M. ., & Kesumawati, A. . (2025). Microwave-assisted extraction and computational modelling of curcumin from turmeric (Curcuma longa) for sunscreen applications. Jurnal Ilmiah Pertanian, 22(2), 57-66. https://doi.org/10.31849/jip.v22i2.22693