Morphological characterization of Trichoderma spp. isolated from the oil palm rhizosphere in peat soils and its potential as a biological control for Ganoderma sp. in vitro

  • Rachmad Saputra Department of Agrotechnology, Faculty of Agriculture, Universitas Riau, Pekanbaru, Indonesia
  • Fifi Puspita Department of Agrotechnology, Faculty of Agriculture, Universitas Riau, Pekanbaru, Indonesia
  • Anthony Hamzah Department of Agrotechnology, Faculty of Agriculture, Universitas Riau, Pekanbaru, Indonesia
  • Irfandri Department of Agrotechnology, Faculty of Agriculture, Universitas Riau, Pekanbaru, Indonesia
  • Eka Suryani Department of Agrotechnology, Faculty of Agriculture, Universitas Riau, Pekanbaru, Indonesia
Keywords: Ganoderma, oil palm, peat soil, rhizosphere, Trichoderma

Abstract

Trichoderma sp. is a saprophytic fungus found in various environments, one of which is in the rhizosphere of oil palm plants which can be used to control Ganoderma and increase the resistance of oil palm plants from stem rot disease. This study aimed to characterize the morphology of Trichoderma spp. origin of peat land in oil palm plantations in Kampar Regency and screening the potential in controlling Ganoderma sp. Trichoderma spp. from oil palm rhizosphere was collected from the smallholder oil palm plantations in Deli Makmur Village, Kampar, Indonesia. This research was conducted by several observations, such as the hypovirulence test; identification of the morphology of Trichoderma spp. fungus; growth and diameter test of Trichoderma spp. fungus; test of the inhibitory ability of Trichoderma spp. fungus against Ganoderma sp. LPTUNRI-Gan002 isolate; test for hyperparasitism of the fungus Trichoderma spp., which has high antagonistic power against Ganoderma sp. isolate. Six Trichoderma spp. isolates had morphological characteristics similar to two species, i.e., Trichoderma harzianum (LPTUNRI-Trc001, Trc004, Trc005, and Trc006 isolates) and Trichoderma asperellum (LPTUNRI-Trc002 and Trc003). LPTUNRI-Trc003 had the highest diameter (90 mm), growth rate (32.66 mm/day), and the highest ability to suppress Ganoderma sp. LPTUNRI-Gan002 (91.03%) compared to the other five isolates.

Downloads

Download data is not yet available.

References

Amaria, W., Harni, R., & Samsudin, S. (2015). Evaluation of antagonistic fungi in inhibiting the growth of Rigidoporus microporus causing white root disease in rubber plants. J. tanaman industry dan penyegar, 2(1), 51-60.

Amaria, W., Taufiq E., & Harni, R. (2013). Seleksi dan Identifikasi Jamur Antagonis Sebagai Agens Hayati Jamur Akar Putih (Rigidoporus microporus) pada tanaman karet. Buletin RISTRI 4(1): 55-64.

Central Agency on Statistics-Statistic of Riau Province. (2020). Riau Province in Figures 2020. BPS-Statistics of Riau Province. Riau.

Corley R.H.V., & Tinker P.B. (2016) The Oil Palm. 5th ed. Wiley Blackwell; Hoboken, NJ, USA.

Elsharkawy, M. M., Hassan, N., Juan-Abgona, R. V., & Hyakumachi, M. (2014). Mechanism of biological control of Rhizoctonia damping-off of cucumber by a non-pathogenic isolate of binucleate Rhizoctonia. African Journal of Biotechnology 13: 640-650.

Gusnawathy, H.S., Taufik, M., Faulika, & Asniah. (2013). In-vitro potential test of Trichoderma indigenous Southeast Sulawesi as bioungicide against Phytophthora capsici. Jurnal Agroteknologi 3: 139-143.

Gusnawaty, H.S., Taufik, M., & Herman. (2014). Effectiveness of Trichoderma indigenous of Southeast Sulawesi as bioungicide against Collectotrichum sp. Secara In-vitro. Jurnal Agroteknos 4: 38-43.

Hushiarian, R., Yusof, N. A., & Dutse, S. W. (2013). Detection and control of Ganoderma boninense: strategies and perspectives. SpringerPlus, 2, 555. https://doi.org/10.1186/2193-1801-2-555

Hutabalian, M., Pinem, M. I., & Oemry, S. (2015). The antagonism test some saprophytic and endophytic fungi of banana against Fusarium oxysporum f. sp. cubens in Laboratory. Jurnal Online Agroteknologi 3: 687-695.

Juan-Abgona, R. V., Katsuno, N., Kageyama, K., & Hyakumachi, M. (1996). Isolation and identification of hypovirulent Rhizoctonia spp. From soil Plant Pathology 4(5): 896-904.

Khan, R., Najeeb, S., Hussain, S., Xie, B., & Li, Y. (2020). Bioactive Secondary Metabolites from Trichoderma spp. against Phytopathogenic Fungi. Microorganisms, 8(6), 817. https://doi.org/10.3390/microorganisms8060817

Lamichhane, J.R., Dürr, C., Schwanck, A. A., Robin, M. H., Sarthou, J. P., Cellier, V., Messéan, A., Aubertot, J. N. (2017). Integrated management of damping-off diseases. A review. Agron. Sustain. Dev. 37, 10.

Lisnawita, Hanum, H., & Tantawi, A. R. (2016). Survey of basal stem rot disease on oil palms (Elaeis guineensis Jacq.) in Kebun Bukit Kijang,North Sumatera, Indonesia. IOP Conf. Series: Earth and Environmental Science 41: 012007.

Marlina, A., & Susanti, F.. (2013). The ability of antagonist Trichoderma sp. against some pathogenic fungus in vitro. Jurnal Floratek 8: 45-51.

Melysa, Fajrin, N., Suharjono, & Dwiastuti, M. E. (2013) Potensi Trichoderma sp. sebagai agen pengendali Fusarium sp. pathogen tanaman strawberry (Fragaria sp.). Jurnal Biotropika 1: 177 – 181.

Muhibbudin, A., Setiyowati, E. M., & Sektiono, A. W. (2021). Mechanism antagonism of Trichoderma viridae against several types of pathogens and production of secondary metabolites. Agrosaintifika: Jurnal Ilmu-Ilmu Pertanian 4: 243-253.

Mukherjee, P. K., Buensanteai, N., Morán-Diez, M.E., Druzhinina, I., & Kenerley, C., M. (2012). Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. Microbiology 158:155-165.

Mukhlis, A., Sitepu, S. F., & Lisnawita. (2017). Potency of Trichoderma spp. From oil rizosphere as biological agent to Ganoderma sp. in vitro. Jurnal Agroekoteknologi FP USU 5:469- 473.

Murali, M., Naziya, B., Ansari, M. A., Alomary, M. N., AlYahya, S., Almatroudi, A., Thriveni, M. C., Gowtham, H. G., Singh, S. B., Aiyaz, M., Kalegowda, N., Lakshmidevi, N., & Amruthesh, K. N. (2021). Bioprospecting of Rhizosphere-Resident Fungi: Their Role and Importance in Sustainable Agriculture. Journal of fungi (Basel, Switzerland), 7(4), 314.

Naher, L., Yusuf, U. K., Ismail, A., Tan, S. G., & Mondal M. M. A. (2013). Ecological status of Ganoderma and basal stem rot disease of oil palms (Elaeis guineensis Jacq.). Australian Journal of Crop Science 7:1723-1727.

Nuraini, F. R., Setyaningsih, R., & Susilowati, A. (2017). Screening and characterization of endophytic fungi as antagonistic agents toward Fusarium oxy sporum on eggplant (Solanum melongena). Biodiversitas 18: 1377-1384.

Nurbaya., Kuswinanti, T., Baharuddin., Rosmana, A., & Millang, S. (2014). Growth speed test of Fusarium spp. on organic media and synthesis media. Jurnal Bionature 15: 45-53.

Nusaibah, A. S., & Musa, H. (2019). A Review Report on the Mechanism of Trichoderma spp. as Biological Control Agent of the Basal Stem Rot (BSR) Disease of Elaeis guineensis. Trichoderma - The Most Widely Used Fungicide. In: Shah MM, Sharif U, Buhari TR (eds) Trichoderma - The Most Widely Used Fungicide. IntechOpen, DOI: 10.5772/intechopen.84469.

Otten, W., Bailey, D. J., & Giligan, C. A. (2004). Empirical evidence of spatial thresholds to control invation of fungal parasites and saprotrophs. Jurnal New Phytologist 163: 125-132.

Priwiratama, H., & Susanto, A. (2014). Utilization of fungi for the biological control of insect pests and Ganoderma disease in the Indonesian oil palm industry. Agr Sci Tech A 4:103–111.

Puspita, F., Dini, I. R., & Sari, D. (2019). Screening of Fungi from Oil Palm Rhizosphere in Peat Soils and the Potential as Biological Agents against Ganoderma boninense. Indonesian Journal of Agricultural Research, 2(2), 97 - 109.

Riau Province Plantation Service. (2014). Laporan Tahunan 2010. Riau Province Plantation Service, Pekanbaru.

Sarma, B. K., Yadav, S. K., Patel, J. S., & Singh, H. B. (2014). Molecular mechanisms of interactions of Trichoderma with other fungal species. The open mycology journal 8:140-147.

Sharma, K. K., & Singh, U. S. (2014). Cultural and morphological characterization of rhizospheric isolates of fungal antagonist Trichoderma. Journal of Applied and Natural Science 6: 451-456.

Siddiquee, S. (2017). Morphology-Based Characterization of Trichoderma Species. Practical Handbook of the Biology and Molecular Diversity of Trichoderma Species from Tropical Regions, 41 73. doi10.1007978-3-319-64946-7_4

Sudarma I. M., Pupawati, N. M., Suniti, N. W., Wijaya, I. N., & Bagus, I. G. N. (2015). Utilization of rhizosphere fungi to control Fusarium oxysporum f.sp. capsici in vitro. Asia Oceania Biosciences And Biotechnology Consortium 11: 83-92.

Suharno, S., Yuprin, A. D., & Barbara, B. (2015). Performance analysis of smallholder oil palm plantation farming through partnership patterns in Central Kalimantan Province. Journal of Indonesian Agribusiness 3: 135-144.

Widya, S. (2019). Identification and Test of Antagonistic Power of Rhizosphere Fungus Isolates From Red Chili Plants Against Colletortichum capsici Causes Anthracnose Disease. [Bachelor Thesis]. Riau University, Pekanbaru. [Indonesia]

Yusnawan, E., Inayati, A., & Baliadi, Y. (2019). Isolation of antagonistic fungi from rhizospheres and its biocontrol activity against different isolates of soil borne fungal pathogens infected legumes. Biodiversitas 20: 2048-2054.

Published
2022-06-12
How to Cite
Saputra, R., Puspita, F., Hamzah, A., Irfandri, & Suryani, E. (2022). Morphological characterization of Trichoderma spp. isolated from the oil palm rhizosphere in peat soils and its potential as a biological control for Ganoderma sp. in vitro. Jurnal Ilmiah Pertanian, 19(2), 56-68. https://doi.org/10.31849/jip.v19i2.9405
Section
Original Articles
Abstract viewed = 764 times
PDF (EN) downloaded = 702 times