Pemanfaatan AI dalam Penilaian dan Analisis Siswa di SMA Negeri 18 Pekanbaru

Authors

  • Zamzami Universitas Lancang Kuning
  • Lucky Haura Van FC Univerisitas Lancang Kuning
  • Yuvi Darmayunata Universitas Lancang Kuning

DOI:

https://doi.org/10.31849/kr4bsa52

Keywords:

kecerdasan buatan, pembelajaran mesin, data orange, analisis pembelajaran, guru

Abstract

Kegiatan pengabdian kepada masyarakat ini bertujuan untuk meningkatkan literasi teknologi guru-guru di SMA Negeri 18 Pekanbaru. Hal ini dilakukan melalui pelatihan pemanfaatan kecerdasan buatan (AI), khususnya machine learning (ML), dalam penilaian dan analisis performa siswa. Pelatihan ini menggunakan Orange Data Mining sebagai tools praktis untuk membantu guru memahami konsep AI/ML, memproses data nilai siswa, dan membangun model prediksi kelulusan secara aplikatif. Program ini dirancang untuk mengatasi rendahnya pemanfaatan teknologi dalam evaluasi pembelajaran dan mendorong adopsi pendekatan berbasis data yang sesuai dengan tren pendidikan modern. Dengan dukungan literatur terkini (2021–2023), kegiatan ini diharapkan dapat memberikan dampak nyata dalam meningkatkan kualitas pengambilan keputusan guru yang berbasis analisis data.

References

Agudo-Peregrina, Á. F., Iglesias-Pradas, S., Conde-González, M. Á., & Hernández-García, Á. (2021). Digital readiness and teaching innovation: A model for adoption of learning analytics in secondary education. Computers in Human Behavior Reports, 4, 100118.

Aljohani, N. R., & Davis, H. C. (2022). Teachers’ concerns about learning analytics: Challenges and ethical considerations. Journal of Learning Analytics, 9(2), 33-47.

Baker, R. S., Bowers, A. J., & Slater, S. (2021). Predictive modeling in education: Ethical and interpretability challenges. Educational Data Mining Journal, 13(1), 3-17.

Dutt, A., Ismail, M. A., & Herawan, T. (2021). A systematic review on educational data mining: Past, present, and future. IEEE Access, 9, 54195-54210.

Ifenthaler, D., & Yau, J. Y.-K. (2021). Utilising learning analytics to support study success: Reflections from educators. Educational Technology Research and Development, 69(1), 327–331.

Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2021). The current landscape of learning analytics in secondary education. Computers in Human Behavior, 116, 106648.

Romero, C., & Ventura, S. (2022). Educational data mining and learning analytics: An updated survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 12(2), e1452.

Peña-Ayala, A. (2021). Learning analytics and AI in education: A review of recent work. AI & Education Review, 4, 34–56.

Bowers, A. J., & Zhou, X. (2023). ROC analysis in education: Practical guide for decision makers. Journal of Educational Measurement, 60(1), 22-37.

Siemens, G., & Long, P. (2021). Data-driven decision making in education: The power and pitfalls. EDUCAUSE Review, 56(3), 34–45.

Tempelaar, D. T., Rienties, B., & Giesbers, B. (2021). Comparing learner behavior from LMS log data with academic performance. British Journal of Educational Technology, 52(4), 1241–1256.

Viberg, O., & Grönlund, Å. (2022). Supporting teachers’ digital competence in AI age. Computers & Education: Artificial Intelligence, 3, 100061.

Yilmaz, R. M., & Yilmaz, F. G. K. (2022). Adaptive learning systems and AI in education: Future trends. Educational Technology Research and Development, 70(3), 861–884.

Gao, Q., & Li, M. (2023). Building explainable models for learning analytics in secondary schools. Journal of Learning Analytics, 10(1), 44–60.

Kumar, S., & Singh, R. (2023). Analyzing the impact of AI-based feedback tools in classrooms. Education and Information Technologies, 28, 10109–10128.

Downloads

Published

2026-01-25

How to Cite

Pemanfaatan AI dalam Penilaian dan Analisis Siswa di SMA Negeri 18 Pekanbaru. (2026). J-COSCIS : Journal of Computer Science Community Service, 6(1), 423-430. https://doi.org/10.31849/kr4bsa52

Most read articles by the same author(s)